%0 Journal Article %A Balea Martín, Ana %A Merayo, Noemí %A Fuente González, Elena De La %A Negro Álvarez, Carlos Manuel %A Delgado-Aguilar, Marc %A Mutje, Pere %A Blanco Suárez, María Ángeles %T Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper %D 2018 %@ 0969-0239 %U https://hdl.handle.net/20.500.14352/88937 %X The production of high filler-loaded recycled papers is often affected by high values of linting and low values of strength. In the first case, the accumulation of lint particles from paper's surface on the printing blanket affects the quality of the printed paper and the pressroom's productivity. In the second case, increasing the use of fillers and recycling cycles lead to poor paper strength. Cellulose nanofibers (CNFs) are receiving a great deal of attention due to their potential as a reinforcement aid for high filler-loaded papers through filler-fiber interaction and interfiber bonding. It is already proven that high quality CNFs can reduce linting, although their industrial application is limited by their high production cost. The objective of this research is, therefore, to quantify the effect of applying lower grade, more sustainable CNFs on linting phenomena and on the mechanical properties of recycled papers. Eucalyptus, pine and triticale residues were used as cellulose sources, and the CNFs were produced minimizing the chemical pretreatment before homogenization. Addition of 3 wt% of CNFs from pine residues into the recycled paper with 15.7 wt% of total filler reduced linting by 40% and increased tensile strength by 15.1%; further improvements on linting and mechanical properties were achieved at 5 wt%. Moreover, the increase in drainage time can be overcome by the addition of a retention aid, in this case a coagulant-cationic polyacrylamide-bentonite system, commonly used in paper mills. %~