RT Journal Article T1 Effects of transition metal doping on the growth and properties of Rutile TiO_2 nanoparticles A1 Cristian Vasquez, G. A1 Andrea Peche-Herrero, M. A1 Maestre Varea, David A1 Cremades Rodríguez, Ana Isabel A1 Ramirez-Castellanos, Julio A1 María Gonzalez-Calbe, José A1 Piqueras de Noriega, Javier AB Rutile TiO_2 nanoparticles doped with V, Cr, or Mn ions have been synthesized via a modified Pechini method using polymeric precursors. The final particle sizes range between 20 and 500 nm depending on the selected dopant. The TiO_2 rutile phase has been stabilized in the doped nanoparticles at 650 degrees C. Microstructural analysis shows a good crystallinity and cationic homogeneity of the doped nanoparticles. The cathodoluminescence study of the doped and undoped nanoparticles shows a luminescence signal related to the structural defects of the samples and the presence of dopants. In particular, an intense 1.52 eV emission associated with Ti^3+ interstitials dominates the luminescence of undoped nanoparticles, which also exhibit less intense emissions extending from 2 to 3.4 eV. The presence of V, Cr, or Mn in the rutile TiO_2 nanoparticles induces variations in the associated cathodoluminescence signal which would be useful in order to achieve a deeper understanding of the doping process and spread future optical applications. X-ray photoelectron spectroscopy (XPS) confirmed the presence of Ti^3+ in the near-surface region of the nanoparticles, the concentration of which decreases when doping. The presence of Ti^3+ interstitials related states in the band gap is discussed. PB Amer Chemical Soc SN 1932-7447 YR 2013 FD 2013-01-31 LK https://hdl.handle.net/20.500.14352/33399 UL https://hdl.handle.net/20.500.14352/33399 LA eng NO (1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69−69.(2) Gratzel, M. Photoelectrochemical Cells. ̈ Nature 2001, 414, 338−344.(3) Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735−758.(4) Millis, A.; Le Hunte, S. J. Photochem. Photobiol. A 1997, 108, 1−35.(5) Kronawitter, C. X.; Bakke, J. R.; Wheeler, D. A.; Wang, W. C.; Chang, C.; Antoun, B. R.; Zhang, J. Z.; Guo, J.; Bent, S. F.; Mao, S. S.; Vayssieres, L. Nano Lett. 2011, 11, 3855−3861.(6) Zhu, Y.; Zhang, L.; Yao, W.; Cao, L. Appl. Surf. Sci. 2000, 158, 32−37.(7) Reidy, D. J.; Holmes, J. D.; Morris, M. A. J. Eur. Ceram. Soc. 2006, 26, 1527−1534.(8) Trentler, T. J.; Denler, T. E.; Bertone, J. F.; Agrawal, A.; Colvin, V. L. J. Am. Chem. Soc. 1999, 121, 1613−1614.(9) Maestre, D.; Cremades, A.; Piqueras, J. Nanotechnology 2006, 17, 1584−1588.(10) Wu, J. J.; Yu, C. C. J. Phys. Chem. B 2004, 108, 3377−3379.(11) Lei, Y.; Zhang, L. D.; Fan, J. C. Chem. Phys. Lett. 2001, 338, 231−236.(12) Pechini, M. P. US Patent No. 3330697, 1967.(13) Fernandez, I.; Cremades, A.; Piqueras, J. ́ Semicond. Sci. Technol. 2005, 20, 239−243.(14) Sanjines, R.; Tang, H.; Berger, H.; Gozzo, F.; Margaritondo, G.; ́ Levy, F. J. Appl. Phys. 1994, 75, 2945−1−2945−7.(15) Kumar, P. M.; Badrinarayanan, S.; Sastry, M. Thin Solid Films 2000, 358 122.130.(16) Colombo, D. P.; Roussel, K. A.; Saeh, J.; Skinner, D. E.; Cavaleri, J. J.; Bowman, R. M. Chem. Phys. Lett. 1995, 232, 207−214.(17) Lei, Y.; Zhang, D.; Meng, G. W.; Li, G. H.; Zhang, X. Y.; Liang, C. H.; Chen, W.; Wang, S. X. Appl. Phys. Lett. 2001, 78, 1125−1127.(18) Wu, J. M.; Shih, H. C.; Wu, W. T.; Tseng, Y. K.; Chen, I. C. J. Cryst. Growth 2005, 281, 384−390.(19) Suisalu, A.; Aarik, J.; Mandar, H.; Sildos, I. ̈ Thin Solid Films 1998, 336, 295−298.(20) Liu, S. W.; Song, C. F.; Lü, M. K.; Gu, F.; Wang, S. F.; Xu, D.; Yuan, D. R.; Wang, C. Mater. Sci. Eng., B 2003, 104, 49−53.(21) Satoh, N.; Nakashima, T.; Kamikura, K.; Yamamoto, K. Nat. Nanotechnol. 2008, 3, 106−111.(22) Peng, H.; Li, J.; Li, S. S.; Xia, J. B. J. Phys. Chem. C 2008, 112, 13964−13969.(23) Enright, B.; Fitzmaurice, D. J. Phys. Chem. 1996, 100, 1027−1035.(24) Monticone, S.; Tufeu, R.; Kanaev, A. V.; Scolan, E.; Sanchez, C. ́ Appl. Surf. Sci. 2000, 162−163, 565−570.(25) Osorio-Guillen, J.; Lany, S.; Zunger, A. ́ Phys. Rev. Lett. 2008, 100, 036601−1−036601−4.(26) Klosek, S.; Raftery, D. J. Phys. Chem. B 2001, 105, 2815−2819.(27) Nogales, E.; García, J. A.; Mendez, B.; Piqueras, J. ́ J. Appl. Phys. 2007, 101, 033517−1−033517−4.(28) Song, C. F.; Lü, M. K.; Yang, P.; Gu, F.; Xu, D.; Yuan, D. R. J. Sol-Gel Sci. Technol. 2003, 28, 196−197.(29) Diebold, U. Surf. Sci. Rep. 2003, 48, 53−229.(30) Luciu, I.; Bartali, R.; Laidani, N. J. Phys. D: Appl. Phys. 2012, 45, 345302−1−345302−9.(31) Thomas, A. G.; Flavell, W. R.; Mallick, A. K.; Kumarasinghe, A. R.; Tsoutsou, D.; Khan, N.; Chatwin, C.; Rayner, S.; Smith, G. C.; Stockbauer, R. L.; Warren, S.; Johal, T. K.; Patel, S.; Holland, D.; Taleb, A.; Wiame, F. Phys. Rev. B 2007, 75, 035105−1−035105−12.(32) Wendt, S.; Sprunger, P. T.; Lira, E.; Madsen, G. K. H.; Li, Z.; Hansen, J. O.; Matthiesen, J.; Blekige-Rasmussen, A.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2008, 320, 1755−1759.(33) Maestre, D.; Martinez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748−11752. NO © 2013 American Chemical Society.This work was supported by MICINN (MAT-2009-07882, CSD 2009-00013, MAT2011-23068). The authors are grateful to National Center for Electron Microscopy (CNME) at Universidad Complutense de Madrid. The authors are grateful to the ESCA microscopy beamline staff for useful advice on XPS measurements at the Elettra Sincrotron in Trieste. NO MICINN DS Docta Complutense RD 29 abr 2024