RT Journal Article T1 The relevance of biomaterials to the prevention and treatment of osteoporosis A1 Arcos Navarrete, Daniel A1 Boccaccini, A. R. A1 Bohner, M. A1 Díez Pérez, A. A1 Epple, M. A1 Gómez Barrena, E. A1 Herrera, A. A1 Planell, J. A. A1 Rodríguez Manas, L. A1 Vallet Regí, María Dulce Nombre AB Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. In order to analyze this scenario and propose alternatives to overcome it, the Spanish and European Network of Excellence for the Prevention and Treatment of Osteoporotic Fractures, ‘‘Ageing’’, was created. This network integrates three communities, e.g. clinicians, materials scientists and industrial advisors, tackling the same problem from three different points of view. Keeping in mind the premise ‘‘living longer, living better’’, this commentary is the result of the thoughts, proposals and conclusions obtained after one year working in the framework of this network. PB Elsevier SN 1742-7061 YR 2014 FD 2014 LK https://hdl.handle.net/20.500.14352/35363 UL https://hdl.handle.net/20.500.14352/35363 LA eng NO [1] Planell JA, Navarro M. Challenges of bone repair. In: Planell, Best, Lacroix,Merolli, editors. Bone repair biomaterials. Cambridge: CRC Press; 2009.[2] Streubel PN, Ricci WM, Wong A, Gardner MJ. Mortality after distal femurfractures in elderly patients. Clin Orthop Relat Res 2011;469:1188–96.[3] National Osteoporosis Foundation. http://www.nof.org.[4] Hoerger TJ, Downs KE, Lakshmanan MC, Lindrooth RC, Plouffe Jr L, WendlingB, et al. Healthcare use among U.S. women aged 45 and older: total costs andcosts for selected postmenopausal health risks. J Womens Health Gend BasedMed 2007;8:1077–89.[5] Rissanen P, Aro S, Sintonen H, Asikainen K, Slätis P, Paavolainen P. Costs andcost-effectiveness in hip and knee replacements: a prospective study. Int JTechnol Assess Health Care 1997;13:574–88.[6] Day JC. Population projections of the United States by age, sex, race andHispanic origin: 1995 to 2050. Washington, DC: US Government PrintingOffice; 1996.[7] Ray NF, Chan JK, Thamer M, Melton III LJ. Medical expenditures for thetreatment of osteoporotic fractures in the United States in 1995: report fromthe National Osteoporosis Foundation. J Bone Miner Res 1997;12:24–35.[8] Chrischilles E, Shireman T, Wallace R. Costs and health effects of osteoporoticfractures. Bone 1994;15:377–86.[9] Melton LJ. Hip fractures: a worldwide problem today and tomorrow. Bone1993;14:1–8.[10] Kanis JA, Johnell O. Requirements for DXA for the management ofosteoporosis in Europe. Osteoporos Int 2005;16:229–38.[11] Manton KG, Gu X. Changes in the prevalence of chronic disability in theUnited States black and nonblack population above age 65 from 1982 to1999. Proc Natl Acad Sci USA 2001;98:6354–9.[12] Boyd CM, Landefeld CS, Counsell SR, Palmer RM, Fortinsky RH, Kresevic D,et al. Recovery of activities of daily living in older adults after hospitalizationfor acute medical illness. J Am Geriatr Soc. 2008;56:2171–9.[13] Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people.Lancet 2013;381:752–62.[14] Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al.Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci2001;56:M146–56.[15] Rodríguez-Mañas L, Féart C, Mann G, Viña J, Chatterji S, Chodzko-Zajko W,et al. Searching for an operational definition of frailty: a Delphi method basedconsensus statement: the frailty operative definition-consensus conferenceproject. J Gerontol A Biol Sci Med Sci 2013;68:62–7.[16] Espeland MA, Gill TM, Guralnik J, Miller ME, Fielding R, Newman AB, et al.Designing clinical trials of interventions for mobility disability: results from1802 D. Arcos et al. / Acta Biomaterialia 10 (2014) 1793–1805Author's personal copythe lifestyle interventions and independence for elders pilot (LIFE-P) trial. JGerontol A Biol Sci Med Sci 2007;62:1237–43.[17] Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, et al.Incidence of vertebral fracture in europe: results from the EuropeanProspective Osteoporosis Study (EPOS). J Bone Miner Res 2002;17:716–24.[18] Gauthier A, Kanis JA, Jiang Y, Martin M, Compston JE, Borgstrom F, et al.Epidemiological burden of postmenopausal osteoporosis in the UK from 2010to 2021: estimations from a disease model. Arch Osteoporos 2011;6:179–88.[19] Seeman E, Delmas PD. Bone quality—the material and structural basis of bonestrength and fragility. N Engl J Med 2006;354:2250–61.[20] Consensus conference. Osteoporosis. JAMA 1984;252:799–802.[21] Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, et al. Numberand type of vertebral deformities: epidemiological characteristics andrelation to back pain and height loss. European Vertebral OsteoporosisStudy Group. Osteoporos Int 1999;9:206–13.[22] Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK,et al. Reduction of vertebral fracture risk in postmenopausal women withosteoporosis treated with raloxifene: results from a 3-year randomizedclinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE)Investigators. J Am Med Assoc 1999;282:637–45.[23] Lewiecki EM, Compston JE, Miller PD, Adachi JD, Adams JE, Leslie WD, et al.Official positions for FRAX(R) bone mineral density and FRAX(R)simplification from Joint Official Positions Development Conference of theInternational Society for Clinical Densitometry and InternationalOsteoporosis Foundation on FRAX(R). J Clin Densitom 2011;14:226–36.[24] Gonzalez-Macias J, Marin F, Vila J, Diez-Perez A. Probability of fracturespredicted by FRAX(R) and observed incidence in the Spanish ECOSAP Studycohort. Bone 2012;50:373–7.[25] Dennison EM, Compston JE, Flahive J, Siris ES, Gehlbach SH, Adachi JD, et al.Effect of co-morbidities on fracture risk: findings from the GlobalLongitudinal Study of Osteoporosis in Women (GLOW). Bone2012;50:1288–93.[26] Hans DB, Kanis JA, Baim S, Bilezikian JP, Binkley N, Cauley JA, et al. Jointofficial positions of the International Society for Clinical Densitometry andInternational Osteoporosis Foundation on FRAX�. Executive summary of the2010 Position Development Conference on Interpretation and use of FRAX� inclinical practice. J Clin Densitom 2011;14:171–80.[27] Zioupos P, Hansen U, Currey JD. Microcracking damage and the fractureprocess in relation to strain rate in human cortical bone tensile failure. JBiomech 2008;41:2932–9.[28] Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, et al.Microindentation for in vivo measurement of bone tissue mechanicalproperties in humans. J Bone Miner Res 2010;25:1877–85.[29] Guerri-Fernandez RC, Nogues X, Quesada Gomez JM, Torres Del Pliego E, PuigL, Garcia-Giralt N, et al. Microindentation for in vivo measurement of bonetissue material properties in atypical femoral fracture patients and controls. JBone Miner Res 2013;28:162–8.[30] Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers ofbone turnover, endogenous hormones and the risk of fractures inpostmenopausal women: the OFELY study. J Bone Miner Res2000;15:1526–36.[31] Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, et al.Markers of bone turnover for the prediction of fracture risk and monitoring ofosteoporosis treatment: a need for international reference standards.Osteoporos Int 2011;22:391–420.[32] Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY.European guidance for the diagnosis and management of osteoporosis inpostmenopausal women. Osteoporos Int 2013;24:23–57.[33] Lekamwasam S, Adachi JD, Agnusdei D, Bilezikian J, Boonen S, Borgstrom F,et al. A framework for the development of guidelines for the management ofglucocorticoid-induced osteoporosis. Osteoporos Int 2012;23:2257–76.[34] Rizzoli R, Adachi JD, Cooper C, Dere W, Devogelaer JP, Diez-Perez A, et al.Management of glucocorticoid-induced osteoporosis. Calcif Tiss Int2012;91:225–43.[35] Kaufman JM, Reginster JY, Boonen S, Brandi ML, Cooper C, Dere W, et al.Treatment of osteoporosis in men. Bone 2013;53:134–44.[36] Diez-Perez A, Hooven FH, Adachi JD, Adami S, Anderson FA, Boonen S, et al.Regional differences in treatment for osteoporosis. The Global LongitudinalStudy of Osteoporosis in Women (GLOW). Bone 2011;49:493–8.[37] Diez-Perez A, Olmos JM, Nogues X, Sosa M, Diaz-Curiel M, Perez-Castrillon JL,et al. Risk factors for prediction of inadequate response to antiresorptives. JBone Miner Res 2012;27:817–24.[38] Diez-Perez A, Adachi JD, Agnusdei D, Bilezikian JP, Compston JE, CummingsSR, et al. Treatment failure in osteoporosis. Osteoporos Int 2012;23:2769–74.[39] Rizzoli R, Reginster JY, Boonen S, Breart G, Diez-Perez A, Felsenberg D, et al.Adverse reactions and drug–drug interactions in the management of womenwith postmenopausal osteoporosis. Calcif Tiss Int 2011;89:91–104.[40] Pazianas M, Abrahamsen B, Eiken PA, Eastell R, Russell RG. Reduced coloncancer incidence and mortality in postmenopausal women treated with anoral bisphosphonate—Danish National Register Based Cohort Study.Osteoporos Int 2012;23:2693–701.[41] Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C,et al. Zoledronic acid and clinical fractures and mortality after hip fracture. NEng J Med 2007;357:1799–809.[42] Kwong FN, Harris MB. Recent developments in the biology of fracture repair. JAm Acad Orthop Surg 2008;16:619–25.[43] Diaz-Garcia RJ, Oda T, Shauver MJ, Chung KC. A systematic review ofoutcomes and complications of treating unstable distal radius fractures in theelderly. J Hand Surg Am 2011 May;36(5):824–35.[44] Papanastassiou ID, Phillips FM, Van Meirhaeghe J, Berenson JR, Andersson GB,Chung G, et al. Comparing effects of kyphoplasty, vertebroplasty, and nonsurgicalmanagement in a systematic review of randomized and nonrandomizedcontrolled studies. Eur Spine J 2012;21:1826–43.[45] Edidin AA, Ong KL, Lau E, Kurtz SM. Mortality risk for operated andnonoperated vertebral fracture patients in the Medicare population. J BoneMiner Res 2011;26:1617–26.[46] Gao H, Liu Z, Xing D, Gong M. Which is the best alternative for displacedfemoral neck fractures in the elderly? A meta-analysis. Clin Orthop Relat Res2012;470:1782–91.[47] Keating JF, Grant A, Masson M, Scott NW, Forbes JF. Randomized comparisonof reduction and fixation, bipolar hemiarthroplasty, and total hiparthroplasty. Treatment of displaced intracapsular hip fractures in healthyolder patients. J Bone Joint Surg Am 2006;88:249–60.[48] Morshed S, Bozic KJ, Ries MD, Malchau H, Colford Jr JM. Comparison ofcemented and uncemented fixation in total hip replacement: a meta-analysis.Acta Orthop 2007;78:315–26.[49] Yamada H, Yoshihara Y, Henmi O, Morita M, Shiromoto Y, Kawano T, et al.Cementless total hip replacement: past, present, and future. J Orthop Sci2009;14:228–41.[50] Parker MJ, Gurusamy KS, Azegami S. Arthroplasties (with and without bonecement) for proximal femoral fractures in adults. Cochrane Database SystRev. 2010;16:CD001706.[51] Abdulkarim A, Ellanti P, Motterlini N, Fahey T, O’Byrne JM. Cemented versusuncemented fixation in total hip replacement: a systematic review and metaanalysisof randomized controlled trials. Orthop Rev (Pavia) 2013;5:e8.[52] Lorich DG, Geller DS, Nielson JH. Osteoporotic pertrochanteric hip fractures.Management and current controversies. J Bone Joint Surg Am2004;86:398–410.[53] Fini M, Giavaresi G, Torricelli P, Krajewski A, Ravaglioli A, Mattioli BelmonteM, et al. Biocompatibility and osteointergration in osteoporotic bone. J BoneJoint Surg Br 2001;83:139–43.[54] Heini PF, Berlemann U, Kaufman M, Lippuner K, Fankhauser C, Van Landuyt P.Augmentation of mechanical properties in osteoporotic vertebral bones – abiomechanical investigation of vertebroplasty efficacy with different bonecements. Eur Spine J 2001;10:164–71.[55] Yu L, Li Y, Zhao K, Tang Y, Cheng Z, Chen J, et al. A novel injectable calciumphosphate cement-bioactive glass composite for boneregeneration. PLOS One2013. http://dx.doi.org/10.1371/journal.pone.0062570.[56] Hoekstra JWM, van den Beucken JJJP, Leeuwenburgh SCG, Bronkhorst EM,Meijer GJ, Jansen JA. Tantalum oxide and barium sulfate as radiopacifiers ininjectable calcium phosphate-poly(lactic-co-glycolic acid) cements formonitoring in vivo degradation. J Biomed Mater Res 2014;A102:141–9.[57] Chen W, Zhou H, Weir MD, Tang M, Bao C, Xu HHK. Human embryonic stemcell-derived mesenchymal stem cell seeding on calcium phosphate cementchitosan-RGD scaffold for bone repair. Tiss Eng A 2013;19:915–27.[58] Vorndran E, Geffers M, Ewald A, Lemm M, Nies B, Gbureck U. Ready-to-useinjectable calcium phosphate bone cement paste as drug carrier. ActaBiomater 2013;9:9558–67.[59] Franchi M, Fini M, Giavaresi G, Ottani V. Peri-implant osteogenesis in healthand osteoporosis. Micron 2005;36:630–44.[60] Fini M, Giavaresis G, Torricelli P, Borsari V, Giardino R, Nicolini A, et al.Osteoporosis and biomaterial osteointegration. Biomed Pharmacother2004;58:487–93.[61] Verron E, Gauthier O, Janvier P, Pilet P, Lesouer J, Bujoli B, et al. In vivo boneaugmentation in an osteoporotic environment using bisphosphonate-loadedcalcium deficient apatite. Biomaterials 2010;31:7776–84.[62] Manzano M, Lozano D, Arcos D, Portal-Nuñez S, López C, Esbrit P, et al.Comparison of the osteoblastic activity conferred to si-doped hydroxyapatitescaffolds by different osteostatin coating. Acta Biomater 2011;7:3555–62.[63] Arcos D, Vallet-Regi M. Bioceramics for drug delivery. Acta Mater2013;61:890–911.[64] Verron E, Bouler JM, Guicheux J. Controlling the biological function of calciumphosphate bone substitutes with drugs. Acta Biomater 2012;8:3541–51.[65] Trejo CG, Lozano D, Manzano M, Doadrio JC, Salinas AJ, Dapia S, et al. Theosteoinductive properties of mesoporous silicate coated with osteostatin in arabbit femur cavity defect model. Biomaterials 2010;31:8564–73.[66] Manzano M, Vallet-Regí M. Revisiting bioceramics: bone regenerative andlocal drug delivery systems. Prog. Solid State Ch 2012;40:17–30.[67] Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D.Factors affecting the pullout strength of cancellous bone screws. J BiomechEng 1996;118:391–8.[68] Frigg R, Frenk A, Wagner M. Biomechanics of plate osteosynthesis. TechOrthop 2007;22:203–8.[69] McKoy BE, An YH. An injectable cementing screw for fixation in osteoporoticbone. J Biomed Mater Res 2000;53:216–20.[70] Hu MH, Wu HT, Chang MC, Yu WK, Wang ST, Liu CL. Polymethylmethacrylateaugmentation of the pedicle screw: the cement distribution in the vertebralbody. Eur Spine J 2011;20:1281–8.[71] Choma TJ, Pfeiffer FM, Swope RW, Hirner JP. Pedicle screw design and cementaugmentation in osteoporotic vertebrae: effects of fenestrations and cementviscosity on fixation and extraction. Spine (Phila Pa 1976)2012;37:E1628–32.D. Arcos et al. / Acta Biomaterialia 10 (2014) 1793–1805 1803Author's personal copy[72] Gittens RA, Olivares-Navarrete R, Cheng A, Anderson DM, McLachlan T,Stephan I, et al. The roles of titanium surface micro/nanotopography andwettability on the differential response of human osteoblast lineage cells.Acta Biomater 2013;9:6268–77.[73] Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence ofsurface characteristics on bone integration of titanium implants – ahistomorphometric study in miniature pigs. J Biomed Mater Res1991;25:889–902.[74] Cocharan DL, Jackson JM, Bernard JP, ten Bruggenkate CM, Buser D, Taylor TD,et al. A 5-year prospective multicenter study of early loaded titaniumimplants with a sandblasted and acid-etched surface. Int Oral MaxillofacImplants 2011;26:1324–32.[75] Orsini G, Piattelli M, Scarano A, Petrone G, Kenealy J, Piattelli A, et al.Randomized, controlled histologic and histomorphometric evaluation ofimplants with nanometer-scale calcium phosphate added to the dual acidetchedsurace in the human posterior maxilla. J Periodontol 2007;78:209–18.[76] Collaert B, Wijnen L, De Bruyn H. A 2-year prospective study on immediateloading with fluoride-modified implants in the edentulous mandible. ClinOral Implants Res 2011;22:1111–6.[77] Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD,Tannenbaum R, et al. The responses to surface wettability gradientes inducedby chitosan nanofilms on microtextured titanium mediated by specificintegrin receptors. Biomaterials 2012;33:7386–93.[78] Bornstein MM, Wittneben JG, Bragger U, Buser D. Early loading at 21 days ofnon-submerged titanium implants with a chemically modified sandblastedand acid-etched surface. 3-year results of a prospective study in the posteriormandible. J Periodontol 2010;81:809–18.[79] Nguyen HQ, Deporter DA, Pilliar RM, Valiquette N, Yakubovich R. The effect ofsol–gel-formed calcium phosphate coatings on bone in growth andosteoconductivity of porous-surfaced Ti alloy implants. Biomaterials2004;25:865–76.[80] Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings producedusing a sputtering process—an alternative to plasma spraying. Biomaterials2005;26:327–37.[81] Surmenev RA. A review of plasma-assisted methods for calcium phosphatebasedcoatings fabrication. Surf Coat Technol 2012;206:2035–56.[82] Heimann RB. Thermal spraying of biomaterials. Surface Coatings Technol2006;201:2012–9.[83] Surmenev RA, Surmeneva MA, Ivanova AA. Significance of calcium phosphatecoatings for the enhancement of new bone osteogenesis – A review. ActaBiomater 2014;10:557–79.[84] Bright DS, Clark HG, McCollum DE. Serum analysis and toxic effects ofmethylmethacrylate. Surg Forum 1972;23:455–7.[85] Leeson MC, Lippitt SB. Thermal aspects of the use of polymethylmethacrylatein large metaphyseal defects in bone: A clinical review and laboratory study.Clin Orthop Relat Res 1993:239–45.[86] Topoleski LDT, Ducheyne P, Cuckler JM. A fractographic analysis of in vivopoly(methyl methalcrylate) bone cement failure mechanisms. J BiomedMater Res 1990;24:135–54.[87] Berlemann U, Ferguson SJ, Nolte LP, Hein PF. Adjacent vertebral failure aftervertebroplasty—a biomechanical investigation. J Bone Joint Surg Br2002;84B:748–52.[88] Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty:state-of-the-art review. J Biomed Mater Res B Appl Biomater2006;76:456–68.[89] Urlings TAJ, Van Der Linden E. Elastoplasty: first experience in 12 patients.Cardiovasc Intervent Radiol 2013;36:479–83.[90] Blattert TR, Jestaedt L, Weckbach A. Suitability of a calcium phosphate cementin osteoporotic vertebral body fracture augmentation: a controlled,randomized, clinical trial of balloon kyphoplasty comparing calciumphosphate versus polymethylmethacrylate. Spine 2009;34:108–14.[91] Piazzolla A, De Giorgi G, Solarino G. Vertebral body recollapse without traumaafter kyphoplasty with calcium phosphate cement. Musculoskelet Surg2011;95:141–5.[92] Boszczyk B. Prospective study of standalone balloon kyphoplasty withcalcium phosphate cement augmentation in traumatic fractures (G.Maestretti et al.). Eur Spine J 2007;16:611.[93] Maestretti G, Cremer C, Otten P, Jakob RP. Prospective study of standaloneballoon kyphoplasty with calcium phosphate cement augmentation intraumatic fractures. Eur Spine J 2007;16:601–10.[94] Bernards CM, Chapman JR, Mirza SK. Lethality of embolizednorian bonecement varies with the time between mixing and embolization. In: 50thAnnual Meeting of the Orthopaedic Research Society, San Fransisco; 2004. p.0254.[95] Krebs J, Aebli N, Goss BG, Sugiyama S, Bardyn T, Boecken I, et al.Cardiovascular changes after pulmonary embolism from injecting calciumphosphate cement. J Biomed Mater Res B Appl Biomater 2007;82:526–32.[96] Dressel S, Jarvers JSG, Josten C, Blattert TR. Percutaneous balloon kyphoplastyin osteoporotic vertebral body fracture with a calcium aluminate ceramic(Xeraspine�). Eur Musculoskelet Rev 2012;7:209–12.[97] Rauschmann M, Vogl T, Verheyden A, Pflugmacher R, Werba T, Schmidt S,et al. Bioceramic vertebral augmentation with a calcium sulphate/hydroxyapatite composite (Cerament™ SpineSupport) in vertebralcompression fractures due to osteoporosis. Eur Spine J 2010;19:887–92.[98] Masala S, Nano G, Marcia S, Muto M, Fucci FPM, Simonetti G. Osteoporoticvertebral compression fractures augmentation by injectable partly resorbableceramic bone substitute (Cerament™|SPINE SUPPORT): A prospectivenonrandomized study. Neuroradiology 2012;54:589–96.[99] Bai B, Kummer FJ, Spivak J. Augmentation of anterior vertebral body screwfixation by an injectable, biodegradable calcium phosphate bone substitute.Spine 2001;26:2679–83.[100] Bohner M, Lemaitre J, Cordey J, Gogolewski S, Ring TA, Perren SM. Potentialuse of biodegradable bone cement in bone surgery: holding strength ofscrews in reinforced osteoporotic bone. Orthop Trans 1992;16:401–2.[101] Mermelstein LE, Chow LC, Friedman C. Crisco Iii JJ. The reinforcement ofcancellous bone screws with calcium phosphate cement. J Orthop Trauma1996;10:15–20.[102] Stankewich CJ, Swiontkowski MF, Tencer AF, Yetkinler DN, Poser RD.Augmentation of femoral neck fracture fixation with an injectable calciumphosphatebone mineral cement. J Orthop Res 1996;14:786–93.[103] Larsson S, Stadelmann VA, Arnoldi J, Behrens M, Hess B, Procter P, et al.Injectable calcium phosphate cement for augmentation around cancellousbone screws. In vivo biomechanical studies. J Biomech 2012;45:1156–60.[104] Stadelmann VA, Bretton E, Terrier A, Procter P, Pioletti DP. Calcium phosphatecement augmentation of cancellous bone screws can compensate for theabsence of cortical fixation. J Biomech 2010;43:2869–74.[105] Vallet-Regí M, Colilla M, Izquierdo-Barba I. Bioactive mesoporoussilicas ascontrolled delivery systems: Application in bonetissue regeneration. JBiomed Nanotechnol 2008;4:1–15.[106] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage.Biomaterials 2000:2529–43.[107] Stevens MM, George J. Exploring and engineering the cell surface interface.Science 2005;310:1135–8.[108] Schieker M, Seitz H, Drosse I, Seitz S, Mutschler W. Biomaterials as scaffoldsfor bone tissue engineering. Eur J Trauma 2006;32:114–24.[109] Kruyt MC, de Bruijn JD, Wilson CE, et al. Viable osteogenic cells are obligatoryfor tissue-engineered ectopic bone formation in goats. Tissue Eng2003;9:327–36.[110] Dorozhkin SV, Epple M. Biological and medical significance of calciumphosphates. Angew Chem Int Ed 2002;41:3130–46.[111] Vallet-Regí M, González-Calbet JM. Calcium phosphates as substitution ofbone tissues. Progr Solid State Chem 2004;32:1–31.[112] Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today2010;13:24–30.[113] Weiner S, Wagner HD. The material bone: structure–mechanical functionrelations. Annu Rev Mater Sci 1998;28:271–9.[114] Tadic D, Epple M. A thorough physicochemical characterisation of 14 calciumphosphate-based bone substitution materials in comparison to natural bone.Biomaterials 2004;25:987–94.[115] Weiss P, Obadia L, Magne D, Bourges X, Rau C, Weitkamp T, et al. SynchrotronX-ray microtomography (on a micron scale) provides three-dimensionalimaging representation of bone ingrowth in calcium phosphate biomaterials.Biomaterials 2003;24:4591–601.[116] Schilling AF, Linhart W, Filke S, Gebauer M, Schinke T, Rueger JM, et al.Resorbability of bone substitute biomaterials by human osteoclasts.Biomaterials 2004;25:3963–72.[117] Detsch R, Hagmeyer D, Neumann M, Schaefer S, Vortkamp A, Wuelling M,et al. The resorption of nanocrystalline calcium phosphates by osteoclast-likecells. Acta Biomater 2010;6:3223–33.[118] Xynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass(R) 45S5 stimulates osteoblast turnover and enhances bone formationin vitro: implications and applications for bone tissue engineering. CalcifTiss Int 2000;67:321–9.[119] Han P, Wu C, Xiao Y. The effect of silicate ions on proliferation, osteogenicdifferentiation and cell signaling pathways (WNT and SHH) of bone marrowstromal cells. Biomater Sci 2013;1:379–92.[120] Aguirre A, González A, Planell JA, Engel E. Extracellular calcium modulatesin vitro bone marrow-derived Flk-1+ CD34+ progenitor cell chemotaxis anddifferentiation through a calcium-sensing receptor. Biochem Biophys ResCommun 2010;393:156–61.[121] Hench LL. Genetic design of bioactive glass. J. Eur Ceram Soc2009;29:1257–65.[122] Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactiveglass in tissue engineering. Acta Biomater 2011;7:2355–73.[123] Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Gene-expressionprofiling of human osteoblasts following treatment with the ionic products ofBioglass� 45S5 dissolution. J Biomed Mater Res 2001;55:151–7.[124] Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses onangiogenesis: in-vitro and in-vivo evidence. A review. Tiss Eng B2010;16:199–207.[125] Navarro M, Ginebra MP, Planell JA. Cellular response to calciumphosphate glasses with controlled solubility. J Biomed Mater Res2003;67A:1009–15.[126] Charles-Harris M, Koch M, Navarro M, Lacroix D, Engel E, Planell JA. A PLA/calcium phosphate degradable composite material for bone tissueengineering: an in vitro study. J Mater Sci Mater Med 2008;19:1503–13.[127] Navarro M, Sanzana ES, Planell JA, Ginebra MP, Torres PA. In vivo behavior ofcalcium phosphate glasses with controlled solubility. Key Eng Mater2005;284–286:893–6.[128] Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG,et al. The effects of strontium-substituted bioactive glasses on osteoblastsand osteoclasts in vitro. Biomaterials 2010;31:3949–56.1804 D. Arcos et al. / Acta Biomaterialia 10 (2014) 1793–1805Author's personal copy[129] Teofilo JM, Brentegani LG, Lamano-Carvalho TL. Bone healing in osteoporoticfemale rats following intra-alveolar grafting of bioactive glass. Arch Oral Biol2004;49:755–62.[130] Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery.Angew Chem Int Ed 2007;46:7548–58.[131] Schliephake H, Weich HA, Dullin C, Gruber R, Frahse S. Mandibular bonerepair by implantation of rhBMP-2 in a slow release carrier or polylacticacid—an experimental study in rats. Biomaterials 2008;29:103–10.[132] Devescovi V, Leonardi E, Ciapetti G, Cenni E. Growth factors in bone repair.Chir Organi Mov 2008;92:161–8.[133] Lissenberg-Thunnissen SN, de Gorter DJJ, Sier CFM, Schipper IB. Use andefficacy of bone morphogenetic proteins in fracture healing. Int Orthop2011;35:1271–80.[134] Wernike E, Montjovent MO, Liu Y, Wismeijer D, Hunziker EB, Siebenrock KA,et al. VEGF incorporated into calcium phosphate ceramics promotesvascularisation and bone formation in vivo. Eur Cells Mater 2010;19:30–40.[135] Lode A, Wolf-Brandstetter C, Reinstorf A, Bernhardt A, Koenig U, Pompe W,et al. Calcium phosphate bone cements, functionalized with VEGF: releasekinetics and biological activity. J Biomed Mater Res 2007;81A:474–83.[136] Evans CH. Gene therapy for bone healing. Exp Rev Mol Med 2010;23(12):e18.[137] Bushman FD. Retroviral integration and human gene therapy. J Clin Invest2007;117:2083–6.[138] Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possiblesolutions. Curr Gene Ther 2005;5:25–35.[139] Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids intocells. Angew Chem Int Ed 2008;47:1382–95.[140] Guo X, Huang L. Recent advances in nonviral vectors for gene delivery. AccChem Res 2012;45:971–9.[141] Wegman F, Bijenhof A, Schuijff L, Oner FC, Dhert WJA, Alblas J. Osteogenicdifferentiation as a result of BMP-2 plasmid DNA based gene therapy in vitroand in vivo. Eur Cell Mater 2011;21:230–42.[142] Zhang C, Wang KZ, Qiang H, Tang YL, Li QA, Li MA, et al. Angiopoiesis andbone regeneration via co-expression of the hVEGF and hBMP genes from anadeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin2010;31:821–30.[143] Krebs MD, Salter E, Chen E, Sutter KA, Alsberg E. Calcium phosphate-DNAnanoparticle gene delivery from alginate hydrogels induces in vivoosteogenesis. J Biomed Mater Res A 2010;92A:1131–8.[144] Keeney M, van den Beucken JJJP, van der Kraan PM, Jansen JA, Pandit A. Theability of a collagen/calcium phosphate scaffold to act as its own vector forgene delivery and to promote bone formation via transfection with VEGF165.Biomaterials 2010;31:2893–902.[145] Cheang TY, Wang SM, Hu ZJ, Xing ZH, Chang GQ, Yao C, et al. Calciumcarbonate/CaIP6 nanocomposite particles as gene delivery vehicles forhuman vascular smooth muscle cells. J Mater Chem 2010;20:8050–5.[146] Chernousova S, Klesing J, Soklakova N, Epple M. A genetically active nanocalciumphosphate paste for bone substitution, encoding the formation ofBMP-7 and VEGF-A. RSC Adv 2013;3:11155–61.[147] Liu H, Webster TJ. Mechanical properties of dispersed ceramic nanoparticlesin polymer composites for orthopedic applications. Int J Nanomed2010;5:299–313.[148] Dunlop JWC, Fratzl P. Biological composites. Ann Rev Mater Res2010;40:1–24.[149] Weiner S, Wagner HD. The material bone: structure-mechanical functionrelations. Annu Rev Mater Sci 1998;28:271–98.[150] Nikolov S, Petrov M, Lymperakis L, Friak M, Sachs C, Fabritius HO, et al.Revealing the design principles of high-performance biological compositesusing ab initio and multiscale simulations: The example of lobster cuticle.Adv Mater 2010;22:519.[151] Kurreck J. RNA Interference: from basic research to therapeutic applications.Angew Chem Int Ed 2009;48:1378–98.[152] Kesharwani P, Gajbhiye V, Jain NK. A review of nanocarriers for the deliveryof small interfering RNA. Biomaterials 2012;33:7138–50.[153] Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials andlimits of nanosystems. Nanomedicine 2009;5:8–20.[154] Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. NatRev Genet 2009;10(2):94–108.[155] Laroui H, Theiss AL, Yan Y, Dalmasso G, Nguyen HTT, Sitaraman SV, et al.Functional TNF-a gene silencing mediated by polyethyleneimine/TNF-asiRNAnanocomplexes in inflamed colon. Biomaterials 2011;32:1218–28.[156] Zhang X, Kovtun A, Mendoza-Palomares C, Oulad-Abdelghani M, Facca S,Fioretti F, et al. SiRNA-loaded multi-shell nanoparticles incorporated into amultilayered film as a reservoir for gene silencing. Biomaterials2010;31:6013–8.[157] NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis,and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA2001;14(285):785–95.[158] Arvidson K, Abdallah BM, Applegate LA, Nicola Baldini N, Cenni E, Gomez-Barrena E, et al. Bone regeneration and stem cells. J Cell Mol Med2011;15:718–46.[159] Gómez-Barrena E, Rosset P, Muller I, Giordano R, Bunu C, Laroylle P, et al.Bone regeneration: stem cell therapies and clinical studies in orthopaedicsand traumatology. J Cell Mol Med 2011;15:1266–86.[160] Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologousbone-marrow grafting for nonunions. Influence of the number andconcentration of progenitor cells. J Bone Joint Surg Am 2005;87:1430–7.[161] Jakob F, Ebert R, Ignatius A, Matsushita T, Watanabe Y, Groll J, et al. Bonetissue engineering in osteoporosis. Maturitas 2013;75:118–24.[162] Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution?Biomaterials 2009;30:2175–9.[163] Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability – predictor of‘‘bioactivity’’? Acta Biomater 2010;6:4181–8.[164] Kallmes DF, Comstock BA, Heagerty PJ, Turner JA, Wilson DJ, Diamond TH,et al. A randomized controlled trial of vertebroplasty for osteoporotic spinefractures. N Engl J Med 2009;361:69–579.[165] Buchbinder R, Osborne RH, Ebeling PR, Wark JD, Mitchell P, Wriedt C, et al. Arandomized trial of vertebroplasty for painful osteoporotic vertebralfractures. N Engl J Med 2009;361:557–68.[166] http://en.wikipedia.org/wiki/Contaminated_haemophilia_blood_products. NO RESEARCHER ID M-3378-2014 (María Vallet Regí)ORCID 0000-0002-6104-4889 (María Vallet Regí) NO Ministerio de Economia y Competitividad (MINECO) DS Docta Complutense RD 22 jul 2024