RT Journal Article T1 Continuous valuations on the space of Lipschitz on the sphere A1 Colesanti, Andrea A1 Pagnini, Daniele A1 Tradacete Pérez, Pedro A1 Villanueva Díez, Ignacio AB We study real-valued valuations on the space of Lipschitz functions over the Euclidean unit sphere Sn−1. After introducing an appropriate notion of convergence, we show that continuous valuations are bounded on sets which are bounded with respect to the Lipschitz norm. This fact, in combination with measure theoretical arguments, will yield an integral representation for continuous and rotation invariant valuations on the space of Lipschitz functions over the 1-dimensional sphere.Contents PB Elsevier SN 0022-1236 YR 2020 FD 2020-11-30 LK https://hdl.handle.net/20.500.14352/7253 UL https://hdl.handle.net/20.500.14352/7253 LA eng NO Colesanti, A., Pagnini, D., Tradacete Pérez, P. et al. «Continuous Valuations on the Space of Lipschitz Functions on the Sphere». Journal of Functional Analysis, vol. 280, n.o 4, febrero de 2021, p. 108873. DOI.org (Crossref), https://doi.org/10.1016/j.jfa.2020.108873. NO Ministerio de Ciencia, Innovación y Universidades (España)/Fondo Europeo de Desarrollo Regional NO Ministerio de Economía, Comercio y Empresa (España) NO Comunidad de Madrid NO Centro de Excelencia Severo Ochoa NO Universidad Complutense de Madrid DS Docta Complutense RD 8 abr 2025