RT Journal Article T1 Resonance fluorescence spectrum of a \Lambda-type quantum emitter close to a metallic nanoparticle A1 Carreño Sánchez, Fernando A1 Antón Revilla, Miguel Ángel A1 Yannopapas, V. A1 Paspalakis, E. AB We theoretically study the resonance fluorescence spectrum of a three-level quantum emitter coupled to a spherical metallic nanoparticle. We consider the case that the quantum emitter is driven by a single laser field along one of the optical transitions. We show that the development of the spectrum depends on the relative orientation of the dipole moments of the optical transitions in relation to the metal nanoparticle. In addition, we demonstrate that the location and width of the peaks in the spectrum are strongly modified by the exciton-plasmon coupling and the laser detuning, allowing to achieve controlled strongly subnatural spectral line. A strong antibunching of the fluorescent photons along the undriven transition is also obtained. Our results may be used for creating a tunable source of photons which could be used for a probabilistic entanglement scheme in the field of quantum information processing. PB American Physical Society SN 2469-9926 YR 2016 FD 2016-07-19 LK https://hdl.handle.net/20.500.14352/24564 UL https://hdl.handle.net/20.500.14352/24564 LA eng NO Aceptado el 5 de julio de 2016. Publicado el 19 July 2016 NO Ministerio de Ciencia e Innovación (MICINN) NO Universidad Complutense de Madrid DS Docta Complutense RD 7 jun 2025