RT Journal Article T1 Realization of macroscopic ratchet effect based on nonperiodic and uneven potentials A1 Rollano, V. A1 Gómez, A. A1 Muñoz Noval, Álvaro A1 Ory, M. C. de A1 Menghini, M. A1 González Herrera, Elvira María A1 Vicent López, José Luis AB Ratchet devices allow turning an ac input signal into a dc output signal. A ratchet device is set by moving particles driven by zero averages forces on asymmetric potentials. Hybrid nanostructures combining artificially fabricated spin ice nanomagnet arrays with superconducting films have been identified as a good choice to develop ratchet nanodevices. In the current device, the asymmetric potentials are provided by charged Neel walls located in the vertices of spin ice magnetic honeycomb array, whereas the role of moving particles is played by superconducting vortices. We have experimentally obtained ratchet effect for different spin ice I configurations and for vortex lattice moving parallel or perpendicular to magnetic easy axes. Remarkably, the ratchet magnitudes are similar in all the experimental runs; i. e. different spin ice I configurations and in both relevant directions of the vortex lattice motion. We have simulated the interplay between vortex motion directions and a single asymmetric potential. It turns out vortices interact with uneven asymmetric potentials, since they move with trajectories crossing charged Neel walls with different orientations. Moreover, we have found out the asymmetric pair potentials which generate the local ratchet effect. In this rocking ratchet the particles (vortices) on the move are interacting each other (vortex lattice); therefore, the ratchet local effect turns into a global macroscopic effect. In summary, this ratchet device benefits from interacting particles moving in robust and topological protected type I spin ice landscapes. PB Nature publishing group SN 2045-2322 YR 2021 FD 2021-08-16 LK https://hdl.handle.net/20.500.14352/4461 UL https://hdl.handle.net/20.500.14352/4461 LA eng NO ©The Author(s) 2021This work was supported by Spanish MICINN grants FIS2016-76058 (AEI/FEDER, UE), EU COST-CA16218. IMDEA Nanociencia acknowledges support from the 'Severo Ochoa' Programme for Centres of Excellence in R&D (MICINN, Grant SEV-2016-0686). MCO and AG acknowledges financial support from Spanish MICINN Grant ESP2017-86582-C4-1-R and IJCI-2017-33991; AMN acknowledges financial support from Spanish CAM Grant 2018-T1/IND-10360. MV acknowledges financial support from Spanish MICINN Grant PID2019-104604RB/AEI/10.13039/50110001103. NO Unión Europea. H2020 NO Ministerio de Economía y Competitividad (MINECO) /FEDER NO Ministerio de Ciencia e Innovación (MICINN) NO Comunidad de Madrid NO Centro de Excelencia Severo Ochoa (MICINN) DS Docta Complutense RD 14 dic 2025