RT Journal Article T1 On real forms of Belyi surfaces with symmetric groups of automorphisms A1 Etayo Gordejuela, José Javier A1 Gromadzki, G. A1 Martínez García, Ernesto AB In virtue of the Belyi Theorem an algebraic curve can be defined over the algebraic numbers if and only if the corresponding Riemann surface can be uniformized by a subgroup of a Fuchsian triangle group. Such surfaces are known as Belyi surfaces. Here we study the actions of the symmetric groups S n on Belyi Riemann surfaces. We show that such surfaces are symmetric and we calculate the number of connected components of the corresponding real forms. PB BIRKHAUSER VERLAG AG SN 1660-5446 YR 2012 FD 2012 LK https://hdl.handle.net/20.500.14352/42223 UL https://hdl.handle.net/20.500.14352/42223 LA eng NO Etayo Gordejuela, J. J., Gromadzki, G. & Martínez García, E. «On Real Forms of Belyi Surfaces With Symmetric Groups of Automorphisms». Mediterranean Journal of Mathematics, vol. 9, n.o 4, noviembre de 2012, pp. 669-75. DOI.org (Crossref), https://doi.org/10.1007/s00009-011-0140-x. NO Ministerio de Economía, Comercio y Empresa (España) NO Universidad Complutense de Madrid NO Polish Ministry of Science and Higher Education DS Docta Complutense RD 7 abr 2025