RT Journal Article T1 Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations A1 Navas-Olive, Andrea A1 Valero, Manuel A1 Jurado-Parras, Teresa A1 Salas-Quiroga, Adán de A1 Averkin, Robert G. A1 Gambino, Giuditta A1 Cid, Elena A1 Liset, M. de la Prida AB Theta oscillations play a major role in temporarily defining the hippocampal rate code by translating behavioral sequences into neuronal representations. However, mechanisms constraining phase timing and cell-type-specific phase preference are unknown. Here, we employ computational models tuned with evolutionary algorithms to evaluate phase preference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any particular memory task. We applied unbiased and hypothesis-free approaches to identify effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase preference. We found that perisomatic inhibition delivered by complementary populations of basket cells interacts with input pathways to shape phase-locked specificity of deep and superficial pyramidal cells. Somatodendritic integration of fluctuating glutamatergic inputs defined cycle-by-cycle by unsupervised methods demonstrated that firing selection is tuneable across sublayers. Our data identify different mechanisms of phase-locking selectivity that are instrumental for flexible dynamical representations of theta sequences. PB Nature Research SN ESSN 2041-1723 YR 2020 FD 2020-05-05 LK https://hdl.handle.net/20.500.14352/6545 UL https://hdl.handle.net/20.500.14352/6545 LA eng NO Ministerio de Economía y Competitividad (MINECO) NO Hungarian National Office for Research and Technology NO Ministerio de Educación y Formación Profesional DS Docta Complutense RD 3 abr 2025