RT Journal Article T1 Operator Space theory: a natural framework for Bell inequalities A1 Junge, M. A1 Pérez García, David A1 Palazuelos Cabezón, Carlos A1 Villanueva Díez, Ignacio A1 Wolf, Michael AB In this letter we show that the field of Operator Space Theory provides a general and powerful mathematical framework for arbitrary Bell inequalities, in particular regarding the scaling of their violation within quantum mechanics. We illustrate the power of this connection by showing that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order $\frac{\sqrt{n}}{\log^2n}$ when observables with n possible outcomes are used. Applications to resistance to noise, Hilbert space dimension estimates and communication complexity are given. PB American Physical Society SN 0031-9007 YR 2009 FD 2009 LK https://hdl.handle.net/20.500.14352/49542 UL https://hdl.handle.net/20.500.14352/49542 LA eng NO Junge, M., Pérez García, D., Palazuelos Cabezón, C. et al. «Operator Space Theory: A Natural Framework for Bell Inequalities». Physical Review Letters, vol. 104, n.o 17, abril de 2010, p. 170405. DOI.org (Crossref), https://doi.org/10.1103/PhysRevLett.104.170405. NO Short (non-technical) version NO Unión Europea NO QUANTOP NO e Danish Natural Science Research Council DS Docta Complutense RD 21 abr 2025