RT Journal Article T1 Where do homogeneous polynomials on ln1 attain their norm? A1 Villanueva Díez, Ignacio A1 Pérez García, David AB Using a ‘reasonable’ measure in , the space of 2-homogeneous polynomials on ℓ1n, we show the existence of a set of positive (and independent of n) measure of polynomials which do not attain their norm at the vertices of the unit ball of ℓ1n. Next we prove that, when n grows, almost every polynomial attains its norm in a face of ‘low’ dimension. PB Elsevier SN 1096-0430 YR 2004 FD 2004-03-01 LK https://hdl.handle.net/20.500.14352/49447 UL https://hdl.handle.net/20.500.14352/49447 LA eng NO Pérez Garcı́a, D. & Villanueva Díez, I. «Where Do Homogeneous Polynomials on ℓ1n Attain Their Norm?» Journal of Approximation Theory, vol. 127, n.o 1, marzo de 2004, pp. 124-33. DOI.org (Crossref), https://doi.org/10.1016/j.jat.2004.01.001. NO Dirección General de Investigación Científica y Técnica (España) DS Docta Complutense RD 12 abr 2025