RT Dissertation/Thesis T1 Bishop operators: invariant subspaces and spectral theory T2 Operadores de Bishop : subespacios invariantes y teoría espectral A1 Monsalve López, Miguel AB For nearly a century, various classes of linear bounded operators have been posed as potential counter examples to the Invariant Subspace Problem: maybe, the most important long-standing open question in Operator Theory. One of the simplest candidates consists of the family of Bishop operators T acting on Lp [0; 1) spaces, which were suggested by Errett Bishop in the fifties. Unlike their seeming simplicity, the structure and features of Bishop operators remain largely uncharted. In particular, hitherto, it is still unknown whether T has non-trivial invariant subspaces in Lp [0; 1) for each 1 p < 1 and any irrational 2 (0; 1)... AB Desde hace casi un siglo, se han propuesto varias clases de operadores como posibles contraejemplos para el Problema del Subespacio Invariante: quizas, la pregunta abierta mas importante en Teoría de Operadores en espacios de Banach reflexivos y, en particular, en espacios de Hilbert. Uno de los candidatos mas sencillos viene dado por la familia de los operadores de Bishop de nidos sobre los espacios Lp [0; 1) para 1 p < 1, los cuales fueron sugeridos por Errett Bishop durante la decada de los cincuenta. A pesar de su aparente sencillez, resulta que las propiedades de los operadores de Bishop T siguen siendo ampliamente desconocidas. En particular, hasta la fecha, es una cuestion abierta determinar si T dispone de subespacios invariantes no triviales en Lp [0; 1) para cualquier irracional 2 (0; 1)... PB Universidad Complutense de Madrid YR 2021 FD 2021-05-12 LK https://hdl.handle.net/20.500.14352/11570 UL https://hdl.handle.net/20.500.14352/11570 LA eng NO Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 26-11-2020 DS Docta Complutense RD 20 abr 2025