RT Journal Article T1 Scattering of massless Dirac particles by oscillating barriers in one dimension A1 González-Santander de la Cruz, Clara A1 Domínguez-Adame Acosta, Francisco A1 Fuentevilla, c. H. A1 Díez, E. AB We study the scattering of massless Dirac particles by oscillating barriers in one dimension. Using the Floquet theory, we find the exact scattering amplitudes for time-harmonic barriers of arbitrary shape. In all cases the scattering amplitudes are found to be independent of the energy of the incoming particle and the transmission coefficient is unity. This is a manifestation of the Klein tunneling in time-harmonic potentials. Remarkably, the transmission amplitudes for arbitrary sharply-peaked potehtials also become independent of the driving frequency. Conditions for which barriers of finite width can be replaced by sharply-peaked potentials are discussed. PB Elsevier SN 0375-9601 YR 2014 FD 2014-02-28 LK https://hdl.handle.net/20.500.14352/34746 UL https://hdl.handle.net/20.500.14352/34746 LA eng NO [1] P. A. M. Dirac, Proc. R. Soc. Lond. A 117 (1928) 610. [2] B. Thaller, The Dirac Equation, Springer-Verlag, 1992. [3] O. Klein, Z. Phys. 53 (1929) 157. [4] A. Calogeracos, N. Dombey, Contemp. Phys. 40 (1999) 313–321. [5] B. H. J. McKellar, G. J. Stephenson, Phys. Rev. A 36 (1987) 2566. [6] F. Sauter, Z. Phys. 69 (1931) 547. [7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666–669. [8] C. W. J. Beenakker, Rev. Mod. Phys. 80 (2008) 1337. [9] P. Allain, J. Fuchs, Eur. Phys. J. B 83 (2011) 301–317 [10] J. M. Cerveró, E. Diez, Int. J. Theor. Phys. 50 (2011) 2134–2143. [11] P. R. Wallace, Phys. Rev. 71 (1947) 622. [12] M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nat. Phys. 2 (2006) 620. [13] M. I. Katsnelson, Graphene. Carbon in two dimensions, Cambridge University Press, 2012. [14] N. Stander, B. Huard, D. Goldhaber-Gordon, Phys. Rev. Lett. 102 (2009) 026807. [15] A. F. Young, P. Kim, Nat. Phys. 5 (2009) 222–226. [16] M. G. Calkin, D. Kiang, Y. Nogami, Phys. Rev. C 38 (1988) 1076–1077. [17] F. Domínguez-Adame, J. Phys. A: Math. Gen. 23 (1990) 1993. [18] D. F. Martinez, L. E. Reichl, Phys. Rev. B 64 (2001) 245315. [19] B. Trauzettel, Y. M. Blanter, A. F. Morpurgo, Phys. Rev. B 75 (2007) 035305. [20] M. A. Zeb, K. Sabeeh, M. Tahir, Phys. Rev. B 78 (2008) 165420. [21] W.-T. Lu, S.-J. Wang, W. Li, Y.-L. Wang, C.-Z. Ye, H. Jiang, J. Appl. Phys. 111 (2012) 103717. [22] B. Korenev, Bessel functions and their applications, Taylor & Francis, 2002. NO ©2014 Elsevier B.V. All rights reserved.This work was supported by MICINN (projects MAT2010-17180 and FIS2009-07880), JCYL (project SA226U13) and USAL (project KBBB). C.G.-S. acknowledges financial upport from Comunidad de Madrid and European Social Foundation. NO Ministerio de Ciencia e Innovación (MICINN) NO JCYL NO USAL NO Comunidad de Madrid NO European Social Foundation DS Docta Complutense RD 18 jul 2024