RT Journal Article T1 Molecular gates in mesoporous bioactive glasses for the treatment of bone tumors and infection A1 Polo, Lorena A1 Gómez Cerezo, María Natividad A1 Vivancos, Jose Luis A1 Sancenón, Félix A1 Arcos Navarrete, Daniel A1 Vallet Regí, María Dulce Nombre A1 Martínez Máñez, Ramón AB Silica mesoporous nanomaterials have been proved to have meaningful application in biotechnology and biomedicine. Particularly, mesoporous bioactive glasses are recently gaining importance thanks to their bone regenerative properties. Moreover, the mesoporous nature of these materials makes them suitable for drug delivery applications, opening new lines in the field of bone therapies. In this work, we have developed innovative nanodevices based on the implementation of adenosine triphosphate (ATP) and e-poly-l-lysine molecular gates using a mesoporous bioglass as an inorganic support. The systems have been previously proved to work properly with a fluorescence probe and subsequently with an antibiotic(levofloxacin) and an antitumoral drug(doxorubicin). The bioactivity of the prepared materials has also been tested, giving promising results. Finally, in vitro cell culture studies have been carried out; demonstrating that this gated devices can provide useful approaches for bone cancer and bone infection treatments.Statement of SignificanceMolecular-gated materials have recently been drawing attention due to their applications in fields as biomedicine and molecular recognition. For the first time as we are aware, we report herein a new enzymatic responsive molecular-gated device consisting in a mesoporous bioactive glass support implemented with two different molecular gates. Both controlled drug delivery properties and apatite-like phase formation ability of the device have been demonstrated, getting promising results. This approach opens up the possibility of developing new stimuli-responsive tailored biomaterials for bone cancer and infection treatments as well as regenerative bone grafts. PB Elsevier SN 1742-7061 YR 2016 FD 2016-12-08 LK https://hdl.handle.net/20.500.14352/17583 UL https://hdl.handle.net/20.500.14352/17583 LA spa NO D. Arcos, M. Vallet-Regí, Sol-gel silica-based biomaterials and bone tissueregeneration, Acta Biomater. 6 (2010) 2874–2888.[2] C. Wu, J. Chang, Mesoporous bioactive glasses: structure characteristics,drug/growth factor delivery and bone regeneration application, InterfaceFocus. 2 (2012) 292–306.[3] L.L. Hench, J.M. Polak, Third-generation biomedical materials, Science 295(2002) 1014–1017.[4] I. Izquierdo-Barba, D. Arcos, Y. Sakamoto, O. Terasaki, A. López-Noriega, M.Vallet-Regí, High-performance mesoporous bioceramics mimicking bonemineralization, Chem. Mater. 20 (2008) 3191–3198.[5] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly ordered mesoporous bioactiveglasses with superior in vitro bone-forming bioactivities, Angew. Chemie - Int.Ed. 43 (2004) 5980–5984.[6] M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery,Angew. Chem. Int. Ed. Engl. 46 (2007) 7548–7558.[7] F. Balas, M. Manzano, P. Horcajada, M. Vallet-Regí, Confinement and controlledrelease of bisphosphonates on ordered mesoporous silica-based materials, J.Am. Chem. Soc. 128 (2006) 8116–8117.[8] D.P. Ferris, Y.L. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, J.I. Zink, Lightoperatedmechanized nanoparticles, J. Am. Chem. Soc. 131 (2009) 1686–1688.[9] C. Wu, J. Chang, Multifunctional mesoporous bioactive glasses for effectivedelivery of therapeutic ions and drug/growth factors, J. Control. Release 193(2014) 282–295.[10] A. López-Noriega, D. Arcos, M. Vallet-Regí, Functionalizing mesoporousbioglasses for long-term anti-osteoporotic drug delivery, Chem. - A Eur. J. 16(2010) 10879–10886.[11] E. Aznar, R. Martínez-Máñez, F. Sancenón, Controlled release usingmesoporous materials containing gate-like scaffoldings, Expert Opin. DrugDeliv. 6 (2009) 643–655.[12] C. Giménez, C. de la Torre, M. Gorbe, E. Aznar, F. Sancenón, J.R. Murguía, R.Martínez-Máñez, M.D. Marcos, P. Amorós, Gated mesoporous silicananoparticles for the controlled delivery of drugs in cancer cells, Langmuir31 (2015) 3753–3762.[13] E. Aznar, M. Oroval, L. Pascual, J.R. Murguía, R. Martínez-Máñez, F. Sancenón,Gated Materials for On-Command Release of Guest Molecules, Chem. Rev. 116(2016) 561–718.[14] C. Coll, A. Bernardos, R. Martínez-Máñez, F. Sancenón, Gated silica mesoporoussupports for controlled release and signaling applications, Acc. Chem. Res. 46(2013) 339–349.[15] M. Manzano, M. Vallet-Regí, New developments in ordered mesoporousmaterials for drug delivery, J. Mater. Chem. 20 (2010) 5593–5604.[16] E. Aznar, R. Villalonga, C. Giménez, F. Sancenón, M.D. Marcos, R. Martínez-Máñez, P. Díez, J.M. Pingarrón, P. Amorós, Glucose-triggered release usingenzyme-gated mesoporous silica nanoparticles, Chem. Commun. (Camb.) 49(2013) 6391–6393.[17] X. Sun, Y. Zhao, V.S.Y. Lin, I.I. Slowing, B.G. Trewyn, Luciferase and luciferin coimmobilizedmesoporous silica nanoparticle materials for intracellularbiocatalysis, J. Am. Chem. Soc. 133 (2011) 18554–18557.[18] R. Liu, X. Zhao, T. Wu, P. Feng, Tunable redox-responsive hybrid nanogatedensembles, J. Am. Chem. Soc. 130 (2008) 14418–14419.[19] R. Liu, Y. Zhang, X. Zhao, A. Agarwal, L.J. Mueller, P. Feng, PH-responsivenanogated ensemble based on gold-capped mesoporous silica through an acidlabileacetal linker, J. Am. Chem. Soc. 132 (2010) 1500–1501.[20] A. Bernardos, E. Aznar, C. Coll, R. Martínez-Máñez, J.M. Barat, M.D. Marcos, F.Sancenón, A. Benito, J. Soto, Controlled release of vitamin B2 using mesoporousmaterials functionalized with amine-bearing gate-like scaffoldings, J. Control.Release 131 (2008) 181–189.[21] N. Mas, I. Galiana, S. Hurtado, L. Mondragón, A. Bernardos, F. Sancenón, M.D.Marcos, P. Amorós, N. Abril-Utrillas, R. Martínez-Máñez, J.R. Murguía,Enhanced antifungal efficacy of tebuconazole using gated pH-drivenmesoporous nanoparticles, Int. J. Nanomedicine. 9 (2014) 2597–2606.[22] J.L. Paris, M.V. Cabanas, M. Manzano, M. Vallet-Regí, Polymer-GraftedMesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers,ACS Nano 9 (2015) 11023–11033.[23] N.K. Mal, M. Fujiwara, Y. Tanaka, T. Taguchi, M. Matsukata, Photo-switchedstorage and release of guest molecules in the pore void of coumarin-modifiedMCM-41, Chem. Mater. 15 (2003) 3385–3394.[24] D. Tarn, D.P. Ferris, J.C. Barnes, M.W. Ambrogio, J.F. Stoddart, J.I. Zink, Areversible light-operated nanovalve on mesoporous silica nanoparticles,Nanoscale. 6 (2014) 3335–3343.[25] A. Schlossbauer, S. Warncke, P.M.E. Gramlich, J. Kecht, A. Manetto, T. Carell, T.Bein, A programmable DNA-based molecular valve for colloidal mesoporoussilica, Angew. Chem. Int. Ed. Engl. 49 (2010) 4734–4737.[26] Z. Yu, N. Li, P. Zheng, W. Pan, B. Tang, Temperature-responsive DNA-gatednanocarriers for intracellular controlled release, Chem. Commun. (Camb.) 50(2014) 3494–3497.[27] L. Mondragón, N. Mas, V. Ferragud, C. de la Torre, A. Agostini, R. Martínez-Máñez, F. Sancenón, P. Amorós, E. Pérez-Payá, M. Orzáez, Enzyme-responsiveintracellular-controlled release using silica mesoporous nanoparticles cappedwith E-poly-L-lysine, Chemistry. 20 (2014) 5271–5281.[28] Z. Zhang, D. Balogh, F. Wang, I. Willner, Smart mesoporous SiO2 nanoparticlesfor the DNAzyme-induced multiplexed release of substrates, J. Am. Chem. Soc.135 (2013) 1934–1940.[29] Z. Zhang, F. Wang, D. Balogh, I. Willner, PH-controlled release of substratesfrom mesoporous SiO2 nanoparticles gated by metal ion-dependentDNAzymes, J. Mater. Chem. B. 2 (2014) 4449–4455.[30] Y.-L. Sun, Y. Zhou, Q.-L. Li, Y.-W. Yang, Enzyme-responsive supramolecularnanovalves crafted by mesoporous silica nanoparticles and cholinesulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release,Chem. Commun. (Camb.) 49 (2013) 9033–9035.[31] F. Porta, G.E.M. Lamers, J. Morrhayim, A. Chatzopoulou, M. Schaaf, H. den Dulk,C. Backendorf, J.I. Zink, A. Kros, Folic Acid-Modified Mesoporous SilicaNanoparticles for Cellular and Nuclear Targeted Drug Delivery, Adv. Healthc.Mater. 2 (2013) 281–286.[32] C. de la Torre, I. Casanova, G. Acosta, C. Coll, M.J. Moreno, F. Albericio, E. Aznar,R. Mangues, M. Royo, F. Sancenón, R. Martínez-Máñez, Gated mesoporoussilica nanoparticles using a double-role circular peptide for the controlled andtarget-preferential release of doxorubicin in CXCR4-expresing lymphoma cells,Adv. Funct. Mater. 25 (2014) 687–695.[33] C. Coll, L. Mondragón, R. Martínez-Máñez, F. Sancenón, M.D. Marcos, J. Soto, P.Amorós, E. Pérez-Payá, Enzyme-mediated controlled release systems byanchoring peptide sequences on mesoporous silica supports, Angew. Chemie- Int. Ed. 50 (2011) 2138–2140.[34] A. Ultimo, C. Giménez, P. Bartovsky, E. Aznar, F. Sancenón, M.D. Marcos, P.Amorós, A.R. Bernardo, R. Martínez-Máñez, A.M. Jiménez-Lara, J.R. Murguía,Targeting Innate Immunity with dsRNA-Conjugated Mesoporous SilicaNanoparticles Promotes Antitumor Effects on Breast Cancer Cells, Chemistry.22 (2016) 1582–1586.[35] B.G. Trewyn, S. Giri, I.I. Slowing, V.S.-Y. Lin, Mesoporous silica nanoparticlebased controlled release, drug delivery, and biosensor systems, Chem.Commun. (Camb.) (2007) 3236–3245.[36] H.M. Lin, W.K. Wang, P.A. Hsiung, S.G. Shyu, Light-sensitive intelligent drugdelivery systems of coumarin-modified mesoporous bioactive glass, ActaBiomater. 6 (2010) 3256–3263.[37] N. Mas, D. Arcos, L. Polo, E. Aznar, S. Sánchez-Salcedo, F. Sancenón, A. García,M.D. Marcos, A. Baeza, M. Vallet-Regí, R. Martínez-Máñez, Towards thedevelopment of smart 3D ‘‘gated scaffolds” for on-command delivery, Small 10(2014) 4859–4864.[38] N. Gómez-Cerezo, I. Izquierdo-Barba, D. Arcos, M. Vallet-Regí, Tailoring thebiological response of mesoporous bioactive materials, J. Mater. Chem. B. 3(2015) 3810–3819.[39] M.P. Nandakumar, A. Cheung, M.R. Marten, Proteomic analysis of extracellularproteins from Escherichia coli W3110, J. Proteome Res. 5 (2006) 1155–1161.[40] K. Haddadi, F. Moussaoui, I. Hebia, F. Laurent, Y. Le Roux, E. coli proteolyticactivity in milk and casein breakdown, Reprod. Nutr. Dev. 45 (2005) 485–496.[41] G. Bacci, A. Longhi, S. Ferrari, S. Lari, M. Manfrini, D. Donati, C. Forni, M. Versari,Prognostic significance of serum alkaline phosphatase in osteosarcoma of theextremity treated with neoadjuvant chemotherapy: Recent experience atRizzoli Institute, Oncol. Rep. 9 (2002) 171–175.[42] I. Trenda, Á. Szegedi, K. Yoncheva, P. Shestakova, J. Mihály, A. Risti, S.Konstantinov, M. Popova, A pH dependent delivery of mesalazine frompolymer coated and drug-loaded SBA-16 systems, Eur. J. Pharm. Sci. 81(2016) 75–81.[43] M.J. Potrzebowski, J. Gajda, W. Ciesielski, I.M. Montesinos, Distancemeasurements in disodium ATP hydrates by means of 31P double quantumtwo-dimensional solid-state NMR spectroscopy, J. Magn. Reson. 179 (2006)173–181.[44] U.A. Hellmich, W. Haase, S. Velamakanni, H.W. van Veen, C. Glaubitz, Caught inthe Act: ATP hydrolysis of an ABC-multidrug transporter followed by real-timemagic angle spinning NMR, FEBS Lett. 582 (2008) 3557–3562.[45] S. Huh, J.W. Wiench, J. Yoo, M. Pruski, V.S. Lin, Organic Functionalization andMorphology Control of Mesoporous Silicas via a Co-Condensation SynthesisMethod, Chem. Mater. 15 (2003) 4247–4256.[46] M.R. Filgueiras, G.P. La Torre, L.L. Hench, Solution effects on the surfacereactions of a bioactive glass, J. Biomed. Mater. Res. 27 (1993) 445–453.[47] O.P. Filho, G.P. La Torre, L.L. Hench, Effect of crystallization on apatite-layerformation of bioactive glass 45S5, J. Biomed. Mater. Res. 30 (1996) 509–514.12 L. Polo et al. / Acta Biomaterialia xxx (2017) xxx–xxxPlease cite this article in press as: L. Polo et al., Molecular gates in mesoporous bioactive glasses for the treatment of[48] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able toreproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3,J. Biomed. Mater. Res. 24 (1990) 721–734.[49] L.L. Hench, Biomaterials, Science 208 (1980) 826–831.[50] C. Turdean-Ionescu, B. Stevensson, I. Izquierdo-Barba, A. García, D. Arcos, M.Vallet-Regí, M. Edén, Surface Reactions of Mesoporous Bioactive GlassesMonitored by Solid-State NMR: Concentration Effects in Simulated Body Fluid,J. Phys. Chem. C 120 (2016) 4961–4974.[51] R. Mathew, C. Turdean-Ionescu, B. Stevensson, I. Izquierdo-Barba, A. García, D.Arcos, M. Vallet-Regí, M. Edén, Direct probing of the phosphate-iondistribution in bioactive silicate glasses by solid-state NMR: Evidence fortransitions between random/clustered scenarios, Chem. Mater. 25 (2013)1877–1885.[52] A. García,M. Cicuéndez, I. Izquierdo-Barba, D. Arcos,M. Vallet-Regí, Essential Roleof Calcium Phosphate Heterogeneities in 2D-Hexagonal and 3D-Cubic SiO 2�CaO�P 2O5Mesoporous BioactiveGlasses,Chem.Mater. 21 (2009) 5474–5484.[53] E. Leonova, I. Izquierdo-Barba, D. Arcos, A. López-Noriega, N. Hedin, M. Vallet-Regí, M. Edén, Multinuclear Solid-State NMR Studies of Ordered MesoporousBioactive Glasses, J. Phys. Chem. C 112 (2008) 5552–5562.[54] T. Yoshida, T. Nagasawa, Epsilon-Poly-L-lysine: microbial production,biodegradation and application potential, Appl. Microbiol. Biotechnol. 62(2003) 21–26. NO RESEARCHER ID M-3378-2014 (María Vallet Regí)ORCID 0000-0002-6104-4889 (María Vallet Regí) NO Unión Europea. H2020 NO Ministerio de Ciencia e Innovación (MICINN) NO Generalitat Valenciana NO CIBER-BBN NO Universitat Politècnica de València DS Docta Complutense RD 5 may 2024