RT Journal Article T1 Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture A1 Brito, Ricardo A1 Soto, R. AB It has been recently reported that a granular mixture in which grains differ in their restitution coefficients presents segregation: the more inelastic particles sink to the bottom. When other segregation mechanisms as buoyancy and the Brazil nut effect are present, the inelasticity induced segregation can compete with them. First, a detailed analysis, based on numerical simulations of two dimensional systems, of the competition between buoyancy and the inelasticity induced segregation is presented, finding that there is a transition line in the parameter space that determines which mechanism is dominant. In the case of neutrally buoyant particles having different sizes the inelasticity induced segregation can compete with the Brazil nut effect (BNE). Reverse Brazil nut effect (RBNE) could be obtained at large inelasticities of the intruder. At intermediate values, BNE and RBNE coexist and large inelastic particles are found both near the bottom and at the top of the system. SN 1539-3755 YR 2009 FD 2009-12 LK https://hdl.handle.net/20.500.14352/43806 UL https://hdl.handle.net/20.500.14352/43806 LA spa NO 1. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987)2. A.P.J. Breu, H.-M. Ensner, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 90, 014302 (2003)3. A. Kudrolli, Rep. Prog. Phys. 67, 209 (2004)4. D.A. Huerta, J.C. Ruiz-Suárez, Phys. Rev. Lett. 92, 114301 (2004); Erratum: 93, 069901(E) (2004)5. M. Schröter, S. Ulrich, J. Kreft, J.B. Swift, H.L. Swinney, Phys. Rev. E 74, 011307 (2006)6. D.V. Kharkar, J.J. McCarthy, J.M. Ottino, Chaos 9, 594 (1999)7. P.M. Reis, T. Mullin, Phys. Rev. Lett. 89, 244301 (2002)8. M.P. Ciamarra, A. Coniglio, M. Nicodemi, Phys. Rev. Lett. 94, 188001 (2005)9. T. Schnautz, R. Brito, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005)10. H.A. Makse, S. Havlin, P.R. King, H.E. Stanley, Nature 386, 379 (1997)11. K.M. Hill, J. Kakalios, Phys. Rev. E 49, R3610 (1994)12. D.A. Sanders, M.R. Swift, R.M. Bowley, P.J. King, Phys. Rev. Lett. 93, 208002 (2004)13. L.T. Lui, R. Michael Swift, R.M. Bowley, P.J. King, Phys. Rev. E 75, 051303 (2007)14. L. Kondic, R.R. Hartley, S.G.K. Tennakoon, B. Painter, R.P. Behringer, Europhys. Lett. 61, 742 (2003)15. D. Serero, I. Goldhirsch, S.H. Noskowick, M.-L. Tan, J. Fluid Mech. 554, 237 (2006)16. J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. E 73, 031301 (2006)17. R.D. Wildman, D.J. Parker, Phys. Rev. Lett. 88, 064301 (2002)18. R.D. Wildman, J.M. Huntley, Phys. Fluids 15, 3090 (2003)19. K. Feitosa, N. Menon, Phys. Rev. Lett. 88, 198301 (2002)20. P.E. Krouskop, J. Talbot, Phys. Rev. E 68, 021304 (2003)21. D. Paolotti, C. Cattuto, U. Marini Bettolo Marconi, A. Puglisi, Granular Matter 5, 75 (2003)22. V. Garzó, Europhys. Lett. 75, 521 (2006)23. V. Garzó, Phys. Rev. E 78, 020301 (2008)24. R. Brito, H. Enríquez, S. Godoy, R. Soto, Phys. Rev. E 77, 061301 (2008)25. R. Soto, Phys. Rev. E 69, 061305 (2004)26. E.L. Grossman, T. Zhou, E. Ben-Naim, Phys. Rev. E 55, 4200 (1997)27. R. Ramírez, R. Soto, Physica A 322, 73 (2003)28. Ph.A. Martin, J. Piasecki, Europhys. Lett. 46, 613 (1999)29. A. Barrat, E. Trizac, Granular Matter 4, 57 (2002)30. B. Meerson, T. Pöschel, Y. Bromberg, Phys. Rev. Lett. 91, 024301 (2003)31. N. Burtally, P.J. King, M.R. Swift, Science 295, 1877 (2002)32. N. Burtally, P.J. King, M.R. Swift, M. Leaper, Granular Matter 5, 57 (2003) NO © EDP Sciences. We want to thank J.M.R. Parrondo for very useful comments. R.B. is supported by the Spanish Projects MOSAICO, UCM/PR34/07-15859 and the Program Profesores UCM en el Extranjero. The research is supported by Fondecyt grants 1061112, 1070958, and 7070301 and Fondap grant 11980002. NO Spanish Projects MOSAICO NO Program Profesores UCM en el Extranjero NO Fondecyt NO Fondap DS Docta Complutense RD 27 abr 2024