RT Journal Article T1 Absence of extended states in a ladder model of DNA A1 Díaz García, Elena A1 Sedrakyan, A. A1 Sedrakyan, D. A1 Domínguez-Adame Acosta, Francisco AB We consider a ladder model of DNA for describing carrier transport in a fully coherent regime through finite segments. A single orbital is associated to each base, and both interstrand and intrastrand overlaps are considered within the nearest-neighbor approximation. Conduction through the sugar-phosphate backbone is neglected. We study analytically and numerically the spatial extend of the corresponding states by means of the Landauer and Lyapunov exponents. We conclude that intrinsic-DNA correlations, arising from the natural base pairing, does not suffice to observe extended states, in contrast to previous claims. PB American Physical Society SN 1098-0121 YR 2007 FD 2007-01 LK https://hdl.handle.net/20.500.14352/51246 UL https://hdl.handle.net/20.500.14352/51246 LA eng NO 1. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). 2. D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature London 403, 635 (2000). 3. P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature London 418, 955 2002; 421, 764 (2003). 4. S. Roche, Phys. Rev. Lett. 91, 108101 (2003). 5. S. Roche, D. Bicout, E. Maciá, and E. Kats, Phys. Rev. Lett. 91, 228101 (2003). 6. M. Unge and S. Stafstrom, Nano Lett. 3, 1417 (2003). 7. 3 S. Roche and E. Maciá, Mod. Phys. Lett. B 18, 847 (2004). 8. H. Yamada, Phys. Lett. A 332, 65 2004; Int. J. Mod. Phys. B 18, 1697 2004; Phys. Rev. B 69, 014205 (2004). 9. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 1998; Physica A 266, 465 (1999). 10. F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). 11. H. Shima, T. Nomura, and T. Nakayama, Phys. Rev. B 70, 075116 (2004). 12. E. Díaz, A. Rodríguez, F. Domínguez-Adame, and V. A. Malyshev, Europhys. Lett. 72, 1018 (2005). 13. R. A. Caetano and P. A. Schulz, Phys. Rev. Lett. 95, 126601 2005; 96, 059704 (2006). 14. A. Sedrakyan and F. Domínguez-Adame, Phys. Rev. Lett. 96, 059703 (2006). 15. G. Cuniberti, L. Craco, D. Porath, and C. Dekker, Phys. Rev. B 65, 241314 R (2002). 16. E. Maciá and S. Roche, Nanotechnology 17, 3002 (2006). 17. D. Klotsa, R. A. Römer, and M. S. Turner, Biophys. J. 89, 2187 (2005). 18. B. Kramer and A. Mckinnon, Rep. Prog. Phys. 56, 1469 (1993). 19. P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher, Phys. Rev. B 22, 3519 (1980). 20. R. Schrader, H. Schulz-Baldes, and A. Sedrakyan, Ann. Henri Poincare 5, 1159 (2004). 21. D. G. Sedrakyan and A. G. Sedrakyan, Phys. Rev. B 60, 10114 (1999). 22. T. Hakobyan, D. Sedrakyan, A. Sedrakyan, I. Gómez, and F. Domínguez-Adame, Phys. Rev. B 61, 11432 (2000). 23. T. Sedrakyan and A. Ossipov, Phys. Rev. B 70, 214206 (2004). 24. Y. J. Yan and H. Zhang, J. Theor. Comput. Chem. 1, 225 (2002). 25. E. L. Albuquerque, M. L. Lyra, and F. A. B. F. de Moura, Physica A 370, 625 (2006). NO © 2007 The American Physical Society.Work at Madrid was supported by MEC Project FIS2006-01485. D.S. and A.S. acknowledges INTAS grant 03-51-5460 for partial financial support. NO MEC NO INTAS DS Docta Complutense RD 2 may 2024