RT Journal Article T1 A continuous model for quasinilpotent operators. A1 Gallardo Gutiérrez, Eva Antonia A1 Partington, Jonathan R. A1 Rodriguez, Daniel J. AB A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space HH . More precisely, given a quasinilpotent operator T on HH , there exists a compact quasinilpotent operator K in HH such that T is similar to a part of K⊕K⊕⋯⊕K⊕⋯K⊕K⊕⋯⊕K⊕⋯ acting on the direct sum of countably many copies of HH . We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of C0C0 -semigroups of quasinilpotent operators. PB Springer SN 0025-5874 YR 2016 FD 2016-05-11 LK https://hdl.handle.net/20.500.14352/24545 UL https://hdl.handle.net/20.500.14352/24545 LA eng NO Gallardo Gutiérrez, E. A., Partington, J. R. & Rodríguez, D. J. et al. «A Continuous Model for Quasinilpotent Operators». Mathematische Zeitschrift, vol. 284, n.o 3-4, diciembre de 2016, pp. 781-90. DOI.org (Crossref), https://doi.org/10.1007/s00209-016-1673-2. NO Ministerio de Economía, Comercio y Empresa (España) DS Docta Complutense RD 4 abr 2025