%0 Journal Article %A Vázquez López, Antonio %A Maestre Varea, David %A Ramírez Castellanos, Julio %A Cremades Rodríguez, Ana Isabel %T In situ local oxidation of SnO induced by laser irradiation: a stability study %D 2021 %@ 2079-4991 %U https://hdl.handle.net/20.500.14352/8155 %X In this work, semiconductor tin oxide (II) (SnO) nanoparticles and plates were synthesized at room conditions via a hydrolysis procedure. X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the high crystallinity of the as-synthesized romarchite SnO nanoparticles with dimensions ranging from 5 to 16 nm. The stability of the initial SnO and the controlled oxidation to SnO_2 was studied based on either thermal treatments or controlled laser irradiation using a UV and a red laser in a confocal microscope. Thermal treatments induced the oxidation from SnO to SnO2 without formation of intermediate SnO_x, as confirmed by thermodiffraction measurements, while by using UV or red laser irradiation the transition from SnO to SnO_2 was controlled, assisted by formation of intermediate Sn3O4, as confirmed by Raman spectroscopy. Photoluminescence and Raman spectroscopy as a function of the laser excitation source, the laser power density, and the irradiation duration were analyzed in order to gain insights in the formation of SnO_2 from SnO. Finally, a tailored spatial SnO/SnO_2 micropatterning was achieved by controlled laser irradiation with potential applicability in optoelectronics and sensing devices. %~