RT Book, Section T1 The equational theory of weak complete simulation semantics over BCCSP A1 Aceto, Luca A1 Frutos Escrig, David De A1 Gregorio Rodríguez, Carlos A1 Ingolfsdottir, Anna A2 Bieliková, Mária AB This paper presents a complete account of positive and negative results on the finite axiomatizability of weak complete simulation semantics over the language BCCSP. We offer finite (un)conditional ground-complete axiomatizations for the weak complete simulation precongruence. In sharp contrast to this positive result, we prove that, in the presence of at least one observable action, the (in)equational theory of the weak complete simulation precongruence over BCCSP does not have a finite (in)equational basis. In fact, the set of (in)equations in at most one variable that hold in weak complete simulation semantics over BCCSP does not have an (in)equational basis of ‘bounded depth’, let alone a finite one. PB Springer SN 978-3-642-27659-0 YR 2012 FD 2012 LK https://hdl.handle.net/20.500.14352/45432 UL https://hdl.handle.net/20.500.14352/45432 LA eng NO Aceto, L. Frutos Escrig, D., Gregorio Rodríguez, C. & Ingolfsdottir, A. «The Equational Theory of Weak Complete Simulation Semantics over BCCSP». SOFSEM 2012: Theory and Practice of Computer Science, editado por Mária Bieliková et al., vol. 7147, Springer Berlin Heidelberg, 2012, pp. 141-52. DOI.org (Crossref), https://doi.org/10.1007/978-3-642-27660-6_12. NO Comunidad de Madrid NO Ministerio de Ciencia, Innovación y Universidades (España) NO Ministerio de Educación, Formación Profesional y Deportes (España) NO Universidad Complutense de Madrid NO Icelandic Research Fund DS Docta Complutense RD 16 abr 2025