RT Journal Article T1 Assembly of Multicomponent Nano-Bioconjugates Composed ofMesoporous Silica Nanoparticles, Proteins, and Gold Nanoparticles A1 Delpiano, Giulia A1 Casula, Maria A1 Piludu, Marco A1 Corpino, Riccardo A1 Ricci, Pier Carlo A1 Vallet Regí, María Dulce Nombre A1 Sanjust, Enrico A1 Monduzzi, Maura A1 Salis, Andrea AB The purpose of this work was the assembly of multicomponent nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (bovine serum albumin, BSA, or lysozyme, LYZ), and gold nanoparticles (GNPs). These nanobioconjugates may find applications in nanomedicine as theranostic devices. Indeed, MSNs can act as drug carriers, proteins stabilize MSNs within the bloodstream, or may have therapeutic or targeting functions. Finally, GNPs can either be used as contrast agents for imaging or for photothermal therapy. Here, amino-functionalized MSNs (MSN−NH2) were synthesized and characterized through various techniques (small angle X-rays scattering TEM, N2 adsorption/desorption isotherms, and thermogravimetric analysis (TGA)). BSA or lysozyme were then grafted on the external surface of MSN−NH2 to obtain MSN−BSA and MSN−LYZ bioconjugates, respectively. Protein immobilization on MSNs surface was confirmed by Fourier transform infrared spectroscopy, ζ-potential measurements, and TGA, which also allowed the estimation of protein loading. The MSN−protein samples were then dispersed in a GNP solution to obtain MSN−protein−GNPs nano-bioconjugates. Transmission electron microscopy (TEM) analysis showed the occurrence of GNPs on the MSN−protein surface, whereas almost no GNPs occurred in the protein-free control samples. Fluorescence and Raman spectroscopies suggested that proteins−GNP interactions involve tryptophan residues. PB American Chemical Society SN 2470-1343 YR 2019 FD 2019-06-25 LK https://hdl.handle.net/20.500.14352/13434 UL https://hdl.handle.net/20.500.14352/13434 LA eng NO RESEARCHER ID M-3378-2014 (María Vallet Regí)ORCID 0000-0002-6104-4889 (María Vallet Regí) NO Unión Europea. H2020 DS Docta Complutense RD 9 abr 2025