RT Journal Article T1 Rapid thermalization of spin chain commuting Hamiltonians A1 Bardet, Ivan A1 Capel, Angela A1 Gao, Li A1 Lucia, Angelo A1 Pérez García, David A1 Rouzé, Cambyse AB We prove that spin chains weakly coupled to a large heat bath thermalize rapidly at any temperature for finite-range, translation-invariant commuting Hamiltonians, reaching equilibrium in a time which scales logarithmically with the system size. From a physical point of view, our result rigorously establishes the absence of dissipative phase transitions for Davies evolutions over translation-invariant spin chains. The result has also implications in the understanding of Symmetry Protected Topological phases for open quantum systems. YR 2022 FD 2022 LK https://hdl.handle.net/20.500.14352/71934 UL https://hdl.handle.net/20.500.14352/71934 LA eng NO [1] K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin,and F. Verstraete. Quantum metropolis sampling. Na-ture, 471:87–90, 2011.[2] K. Huang. Statistical Mechanics. John Wiley & Sons,1987.[3] R. D. Somma, S. Boixo, H. Barnum, and K. Emanuel.Quantum simulations of classical annealing processes.Phys. Rev. Lett., 101:130504, 2008.[4] F. G. S. L. Brandão and K. M. Svore. Quantum speedupsfor solving semidefinite programs. In 2017 IEEE 58thAnnual Symposium on Foundations of Computer Science(FOCS), pages 415–426. IEEE, 2017.[5] M. Kieferová and N. Wiebe. Tomography and generativetraining with quantum Boltzmann machines. Phys. Rev.A, 96(6):062327, 2017.[6] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost,N. Wiebe, and S. Lloyd. Quantum machine learning.Nature, 549:195–202, 2017.[7] T. S. Cubitt, A. Lucia, S. Michalakis, and D. Pérez-García. Stability of local quantum dissipative systems.Commun. Math. Phys., 337:1275–1315, 2015.[8] A. Lucia, T. S. Cubitt, S. Michalakis, and D. Pérez-García. Rapid mixing and stability of quantum dissipativesystems. Phys. Rev. A, 91(4), April 2015.[9] R. J. Glauber. Time-dependent statistics of the Isingmodel. J. Math. Phys., 4(2):294–307, 1963.[10] R. A. Holley and D.W. Stroock. Uniform and L2 convergencein one dimensional stochastic Ising models. Com-mun. Math. Phys., 123(1):85–93, 1989.[11] R. Holley. Rapid convergence to equilibrium in one dimensionalstochastic Ising models. Ann. Prob., pages72–89, 1985.[12] B. Zegarlinski. Log-Sobolev inequalities for infinite onedimensionallattice systems. Commun. Math. Phys, 133(1):147–162, 1990.[13] M. J. Kastoryano and F. G. S. L. Brandao. QuantumGibbs samplers: The commuting case. Commun. Math.Phys., 344(3):915–957, 2016.[14] R. Alicki, M. Fannes, and M. Horodecki. On thermalizationin Kitaev’s 2D model. J. Phys. A: Math. Theor., 42(6):065303, 2009.[15] A. Kómár, O. Landon-Cardinal, and K. Temme. Necessityof an energy barrier for self-correction of abelianquantum doubles. Phys. Rev. A, 93(5):052337, 2016.[16] A. Lucia, D. Pérez-García, and A. Pérez-Hernández.Thermalization in Kitaev’s quantum double modelsvia Tensor Network techniques. arXiv preprintarXiv:2107.01628, 2021.[17] L. Gross. Hypercontractivity and logarithmic sobolevinequalities for the clifford-dirichlet form. Duke Math.J., 42(3), September 1975.[18] M. J. Kastoryano and K. Temme. Quantum logarithmicSobolev inequalities and rapid mixing. J. Math. Phys.,54(5):052202, May 2013.[19] K. Temme, F. Pastawski, and M. J. Kastoryano. Hypercontractivityof quasi-free quantum semigroups. J. Phys.A: Math. Theor., 47(40):405303, September 2014.[20] I. Bardet, Á. Capel, A. Lucia, D. Pérez-García, andC. Rouzé. On the modified logarithmic Sobolev inequalityfor the heat-bath dynamics for 1D systems. J. Math.Phys., 62(6):061901, 2021.[21] Á Capel, C. Rouzé, and D. Stilck França. The modifiedlogarithmic Sobolev inequality for quantum spin systems:classical and commuting nearest neighbour interactions.arXiv preprint, arXiv:2009.11817, 2020.[22] Á. Capel, A. Lucia, and D. Pérez-García. Quantumconditional relative entropy and quasi-factorization ofthe relative entropy. J. Phys. A: Math. Theor., 51(48):484001, 2018.[23] S. Beigi, N. Datta, and C. Rouzé. Quantum reversehypercontractivity: Its tensorization and application tostrong converses. Commun. Math. Phys., 376(2):753–794,May 2020.[24] P. Werner, K. Völker, M. Troyer, and S. Chakravarty.Phase Diagram and Critical Exponents of a DissipativeIsing Spin Chain in a Transverse Magnetic Field. Phys.Rev. Lett., 94:047201, 2005.[25] L. Capriotti, A. Cuccoli, A. Fubini, V. Tognetti, andR. Vaia. Dissipation-Driven Phase Transition in Two-Dimensional Josephson Arrays. Phys. Rev. Lett., 94:157001, 2005.[26] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler,and P. Zoller. Quantum states and phases in driven openquantum systems with cold atoms. Nat. Phys., 4:878–883, 2008.[27] S. Morrison and A. S. Parkins. Dissipation-driven quantumphase transitions in collective spin systems. J. Phys.B: At. Mol. Opt. Phys., 41:195502, 2008.[28] E.M. Kessler, G. Giedke, A. Imamoglu, S. F. Yelin, M. D.Lukin, and J. I. Cirac. Dissipative phase transitions in acentral spin system. Phys. Rev. A, 86:012116, 2012.[29] B. Horstmann, J. I. Cirac, and G. Giedke. Noise-drivendynamics and phase transitions in fermionic systems.Phys. Rev. A, 87:012108, 2013.[30] F. Verstraete, M. M. Wolf, and J. I. Cirac. Quantumcomputation and quantum-state engineering driven bydissipation. Nat. Phys., 5:633–636, 2009.[31] X.-G. Wen. Quantum orders and symmetric spin liquids.Phys. Rev. B, 65(16):165113, 2002.[32] Z.-C. Gu and X.-G. Wen. Tensor-entanglement-filteringrenormalization approach and symmetry-protected topologicalorder. Phys. Rev. B, 80(15):155131, 2009.[33] X. Chen, Z.-C. Gu, and X.-G. Wen. Classification ofgapped symmetric phases in one-dimensional spin systems.Phys. Rev. B, 83(3):035107, 2011.[34] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller. Topologyby dissipation in atomic quantum wires. Nat. Phys., 7(12):971–977, October 2011.[35] D. Rainis and D. Loss. Majorana qubit decoherence byquasiparticle poisoning. Phys. Rev. B, 85(17):174533,2012.[36] O. Viyuela, A. Rivas, and M. A. Martín-Delgado.Thermal instability of protected end states in a onedimensionaltopological insulator. Phys. Rev. B, 86(15),October 2012.[37] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico,A. İmamoğlu, P. Zoller, and S. Diehl. Topology by dissipation.New J. Phys., 15(8):085001, August 2013.[38] O. Viyuela, A. Rivas, and M. A. Martín-Delgado.Symmetry-protected topological phases at finite temperature.2D Mater., 2(3):034006, 2015.[39] S. Roberts, B. Yoshida, A. Kubica, and S. D. Bartlett.Symmetry-protected topological order at nonzero temperature.Phys. Rev. A, 96(2), August 2017.[40] M. McGinley and N. R. Cooper. Interacting symmetryprotectedtopological phases out of equilibrium. Phys.Rev. Res., 1(3):033204, 2019.[41] A. Coser and D. Pérez-García. Classification of phasesfor mixed states via fast dissipative evolution. Quantum,3:174, 2019.[42] M. McGinley and N. R. Cooper. Fragility of time-reversalsymmetry protected topological phases. Nat. Phys., 16(12):1181–1183, 2020.[43] C. de Groot, A. Turzillo, and N. Schuch. Symmetry protectedtopological order in open quantum systems. arXivpreprint, arXiv:2112.04483, 2021.[44] A. Altland, M. Fleischhauer, and S. Diehl. SymmetryClasses of Open Fermionic Quantum Matter. Phys. Rev.X, 11(2), May 2021.[45] O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, S. Filipp,and M. A. Martín-Delgado. Observation of topologicaluhlmann phases with superconducting qubits. NPJQuantum Inf., 4(1):1–6, 2018.[46] H. J. Briegel and R. Raussendorf. Persistent entanglementin arrays of interacting particles. Phys. Rev. Lett.,86(5):910–913, January 2001.[47] R. Raussendorf and H. J. Briegel. A One-Way QuantumComputer. Phys. Rev. Lett., 86(22):5188–5191, May2001.[48] R. Raussendorf and H. J. Briegel. Computational modelunderlying the one-way quantum computer. QuantumInf. Comput., 2(6):443–486, October 2002.[49] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio, andV. Vedral. Quantum phase transition between cluster andantiferromagnetic states. EPL (Europhysics Letters), 95(5):50001, August 2011.[50] B. Buča and T. Prosen. A note on symmetry reductionsof the lindblad equation: transport in constrained openspin chains. New J. Phys., 14(7):073007, 2012.[51] V. V. Albert and L. Jiang. Symmetries and conservedquantities in Lindblad master equations. Phys. Rev. A,89(2), February 2014.[52] C. Palazuelos and T. Vidick. Survey on nonlocal gamesand operator space theory. J. Math. Phys., 57:015220,2016.[53] E. B. Davies. Markovian master equations. Commun.Math. Phys., 39(2):91–110, June 1974.[54] I. Bardet, Á. Capel, L. Gao, A. Lucia, D. Pérez-García,and C. Rouzé. Entropy decay for Davies semigroups of 1Dquantum spin chains. arXiv preprint, arXiv:2112.00601,2021.[55] M. M. Wolf. Quantum channels & operations: Guidedtour. Lecture notes available at http://www-m5. ma. tum.de/foswiki/pub M, 5, 2012.[56] H. Araki. Gibbs states of a one dimensional quantumlattice. Commun. Math. Phys., 14(2):120–157, 1969.[57] A. Bluhm, Á. Capel, and A. Pérez-Hernández. Exponentialdecay of mutual information for Gibbs states of localhamiltonians. arXiv preprint, arXiv:2104.04419, 2021.[58] L. Gao and C. Rouzé. Complete entropic inequalitiesfor quantum Markov chains. arXiv preprintarXiv:2102.04146, 2021.[59] S. Bravyi, M. B. Hastings, and S. Michalakis. Topologicalquantum order: stability under local perturbations. J.Math. Phys., 51(9):093512, 2010.[60] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa.Entanglement spectrum of a topological phase in one dimension.Phys. Rev. B, 81(6):064439, 2010.[61] J. Haegeman, D. Pérez-García, I. Cirac, and N. Schuch.Order parameter for symmetry-protected phases in onedimension. Phys. Rev. Lett., 109(5):050402, 2012.[62] N. Schuch, D. Pérez-García, and I. Cirac. Classifyingquantum phases using matrix product states and projectedentangled pair states. Phys. Rev. B, 84(16), October2011.[63] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa.Symmetry protection of topological phases inone-dimensional quantum spin systems. Phys. Rev. B,85(7), February 2012.[64] L. Fidkowski and A. Kitaev. Topological phases offermions in one dimension. Phys. Rev. B, 83(7):075103,2011.[65] M. Sanz, M. M. Wolf, D. Pérez-García, and J. I. Cirac.Matrix product states: Symmetries and two-body Hamiltonians.Phys. Rev. A, 79(4), April 2009.[66] J. I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete.Matrix product density operators: Renormalizationfixed points and boundary theories. Ann. Phys.,378:100–149, March 2017.[67] G. De las Cuevas, J. I. Cirac, N. Schuch, and D. Pérez-García. Irreducible forms of matrix product states: Theoryand applications. J. Math. Phys., 58(12):121901, December2017.[68] Y. Ogata. Classification of gapped ground statephases in quantum spin systems. arXiv preprint,arXiv:2110.04675, 2021.[69] I. Cirac, D. Pérez-García, N. Schuch, and F. Verstraete.Matrix product states and projected entangledpair states: Concepts, symmetries, and theorems. arXivpreprint arXiv:2011.12127, 2020.[70] R. Carbone, E. Sasso, and V. Umanità. Decoherencefor Quantum Markov Semi-Groups on Matrix Algebras.Ann. Henri Poincaré, 14(4):681–697, August 2012.[71] F. Cesi. Quasi-factorization of the entropy and logarithmicSobolev inequalities for Gibbs random fields. Probab.Theory Relat. Fields, 120(4):569–584, 2001.[72] P. Dai Pra, A. M. Paganoni, and G. Posta. Entropyinequalities for unbounded spin systems. Ann. Probab.,30(4):1959–1976, 10 2002.[73] Á. Capel. Quantum Logarithmic Sobolev Inequalities forQuantum Many-Body Systems: An approach via Quasi-Factorization of the Relative Entropy. Ph.D. thesis atUniversidad Autónoma de Madrid, 2019.[74] I. Bardet, Á. Capel, and C. Rouzé. Approximate tensorizationof the relative entropy for noncommuting conditionalexpectations. Ann. Henri Poincaré, 23:101–140,2022.[75] N. LaRacuente. Quasi-factorization and multiplicativecomparison of subalgebra-relative entropy. arXivpreprint, arXiv:1912.00983, 2019.[76] M. Junge and J. Parcet. Mixed-norm inequalities andoperator space Lp embedding theory. American MathematicalSoc., 2010.[77] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani. Thedetectability lemma and quantum gap amplification. InProceedings of the forty-first annual ACM symposium onTheory of computing, pages 417–426, 2009.[78] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani.Quantum Hamiltonian complexity and the detectabilitylemma. arXiv preprint, arXiv:1011.3445, 2010.[79] I. Bardet and C. Rouzé. Hypercontractivity and logarithmicsobolev inequality for non-primitive quantummarkov semigroups and estimation of decoherence rates.arXiv preprint, arXiv:1803.05379, 2018.[80] L. Gao, M. Junge, and N. LaRacuente. Fisher informationand logarithmic sobolev inequality for matrix-valuedfunctions. In Ann. Henri Poincaré, volume 21, pages3409–3478. Springer, 2020.[81] G. Pisier. Non-commutative vector valued Lp-spaces andcompletely p-summing maps. Société mathématique deFrance, 1998. NO Unión Europea. Horizonte 2020 NO Ministerio de Ciencia e Innovación (MICINN) NO Ministerio de Economía y Competitividad (MINECO) NO Comunidad de Madrid NO ANR (Agence Nationale de la Recherche) DS Docta Complutense RD 28 abr 2024