RT Journal Article T1 X-Ray nanothermometry of nanoparticles in tumor-mimicking tissues under photothermia A1 López Méndez, Rosalía A1 Reguera, Javier A1 Fromain, Alexandre A1 Abu Serea, Esraa Samy A1 Céspedes, Eva A1 Teran, Francisco José A1 Zheng, Fangyuan A1 Parente, Ana A1 García, Miguel Ángel A1 Fonda, Emiliano A1 Camarero, Julio A1 Wilhelm, Claire A1 Muñoz Noval, Álvaro A1 Espinosa, Ana AB Temperature plays a critical role in regulating body mechanisms and indicating inflammatory processes. Local temperature increments above 42 °C are shown to kill cancer cells in tumorous tissue, leading to the development of nanoparticle-mediated thermo-therapeutic strategies for fighting oncological diseases. Remarkably, these therapeutic effects can occur without macroscopic temperature rise, suggesting localized nanoparticle heating, and minimizing side effects on healthy tissues. Nanothermometry has received considerable attention as a means of developing nanothermosensing approaches to monitor the temperature at the core of nanoparticle atoms inside cells. In this study, a label-free, direct, and universal nanoscale thermometry is proposed to monitor the thermal processes of nanoparticles under photoexcitation in the tumor environment. Gold-iron oxide nanohybrids are utilized as multifunctional photothermal agents internalized in a 3D tumor model of glioblastoma that mimics the in vivo scenario. The local temperature under near-infrared photo-excitation is monitored by X-ray absorption spectroscopy (XAS) at the Au L3-edge (11 919 eV) to obtain their temperature in cells, deepening the knowledge of nanothermal tumor treatments. This nanothermometric approach demonstrates its potential in detecting high nanothermal changes in tumor-mimicking tissues. It offers a notable advantage by enabling thermal sensing of any element, effectively transforming any material into a nanothermometer within biological environments. PB Wiley SN 2192-2640 YR 2023 FD 2023-12-15 LK https://hdl.handle.net/20.500.14352/103026 UL https://hdl.handle.net/20.500.14352/103026 LA eng NO 2023 Acuerdos transformativos CRUE NO Comunidad de Madrid NO Ministerio de Ciencia e Innovación (España) NO Fondo Europeo de Desarrollo Regional (Unión Europea) NO Agencia Estatal de Investigación (España) NO Ministerio de Economía y Competitividad (España) DS Docta Complutense RD 21 abr 2025