RT Journal Article T1 Candida albicans Modifies the Protein Composition and Size Distribution of THP1 macrophages-derived Extracellular Vesicles. A1 Reales Calderón, Jose Antonio A1 Vaz, Catarina A1 Monteoliva Díaz, Lucía A1 Molero, Gloria A1 Gil, Concha AB The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, non-coding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus, we have undertaken the first quantitative proteomic analysis on the protein composition of THP1 macrophages-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity; while in THP1 non-differenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication. PB American Chemical Society SN 1535-3907 YR 2016 FD 2016-10-14 LK https://hdl.handle.net/20.500.14352/19005 UL https://hdl.handle.net/20.500.14352/19005 LA eng NO 1) Brown, G. D.; Denning, D. W.; Gow, N. A.; Levitz, S. M.; Netea,M. G.; White, T. C. Hidden killers: human fungal infections. Sci.Transl. Med. 2012, 4 (165), 165rv13.(2) Netea, M. G.; Joosten, L. A. Master and commander: epigeneticregulation of macrophages. Cell Res. 2016, 26 (2), 145−6.(3) Bourgeois, C.; Majer, O.; Frohner, I. E.; Tierney, L.; Kuchler, K.Fungal attacks on mammalian hosts: pathogen elimination requiressensing and tasting. Curr. Opin. Microbiol. 2010, 13 (4), 401−8.(4) Denzer, K.; Kleijmeer, M. J.; Heijnen, H. F.; Stoorvogel, W.;Geuze, H. J. Exosome: from internal vesicle of the multivesicular bodyto intercellular signaling device. J. Cell Sci. 2000, 113 (Pt 19), 3365−74.(5) Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes,microvesicles, and friends. J. Cell Biol. 2013, 200 (4), 373−383.(6) Reales-Calderon, J. A.; Corona, F.; Monteoliva, L.; Gil, C.;Martinez, J. L. Quantitative proteomics unravels that the posttranscriptionalregulator Crc modulates the generation of vesicles andsecreted virulence determinants of Pseudomonas aeruginosa. J.Proteomics 2015, 127 (Pt B), 352−64.(7) Gil-Bona, A.; Llama-Palacios, A.; Parra, C. M.; Vivanco, F.;Nombela, C.; Monteoliva, L.; Gil, C. Proteomics unravels extracellularvesicles as carriers of classical cytoplasmic proteins in Candida albicans.J. Proteome Res. 2015, 14 (1), 142−53.(8) Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A.Through the wall: extracellular vesicles in Gram-positive bacteria,mycobacteria and fungi. Nat. Rev. Microbiol. 2015, 13 (10), 620−630.(9) Hassani, K.; Olivier, M. Immunomodulatory impact ofLeishmania-induced macrophage exosomes: a comparative proteomicand functional analysis. PLoS Neglected Trop. Dis. 2013, 7 (5), e2185.(10) Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.;Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.;Gangoda, L.; Mathivanan, S. ExoCarta: A Web-Based Compendium ofExosomal Cargo. J. Mol. Biol. 2016, 428 (4), 688−92.(11) Singh, P. P.; Smith, V. L.; Karakousis, P. C.; Schorey, J. S.Exosomes isolated from mycobacteria-infected mice or culturedmacrophages can recruit and activate immune cells in vitro and invivo. J. Immunol. 2012, 189 (2), 777−85.(12) Wang, J.; Yao, Y.; Xiong, J.; Wu, J.; Tang, X.; Li, G. Evaluationof the inflammatory response in macrophages stimulated withexosomes secreted by Mycobacterium avium-infected macrophages.BioMed Res. Int. 2015, 2015, 658421.(13) Cronemberger-Andrade, A.; Aragao-Franca, L.; de Araujo, C. F.;Rocha, V. J.; Borges-Silva, M. d. C.; Figueiras, C. P.; Oliveira, P. R.; deFreitas, L. A.; Veras, P. S.; Pontes-de-Carvalho, L. Extracellular vesiclesfrom Leishmania-infected macrophages confer an anti-infectioncytokine-production profile to naive macrophages. PLoS NeglectedTrop. Dis. 2014, 8 (9), e3161.(14) Zhu, Y.; Chen, X.; Pan, Q.; Wang, Y.; Su, S.; Jiang, C.; Li, Y.; Xu,N.; Wu, L.; Lou, X.; Liu, S. A Comprehensive Proteomics AnalysisReveals a Secretory Path- and Status-Dependent Signature ofExosomes Released from Tumor-Associated Macrophages. J. ProteomeRes. 2015, 14 (10), 4319−31.(15) Wang, J. J.; Chen, C.; Xie, P. F.; Pan, Y.; Tan, Y. H.; Tang, L. J.Proteomic analysis and immune properties of exosomes released bymacrophages infected with Mycobacterium avium. Microbes Infect.2014, 16 (4), 283−91.(16) Cypryk, W.; Ohman, T.; Eskelinen, E. L.; Matikainen, S.;Nyman, T. A. Quantitative proteomics of extracellular vesicles releasedfrom human monocyte-derived macrophages upon beta-glucanstimulation. J. Proteome Res. 2014, 13 (5), 2468−77.(17) Reales-Calderon, J. A.; Sylvester, M.; Strijbis, K.; Jensen, O. N.;Nombela, C.; Molero, G.; Gil, C. Candida albicans induces proinflammatoryand anti-apoptotic signals in macrophages as revealed byquantitative proteomics and phosphoproteomics. J. Proteomics 2013,91, 106−35.(18) Reales-Calderon, J. A.; Aguilera-Montilla, N.; Corbi, A. L.;Molero, G.; Gil, C. Proteomic characterization of human proinflammatoryM1 and anti-inflammatory M2 macrophages and theirresponse to Candida albicans. Proteomics 2014, 14 (12), 1503−18.(19) Gillum, A. M.; Tsay, E. Y.; Kirsch, D. R. Isolation of the Candidaalbicans gene for orotidine-5′-phosphate decarboxylase by complementationof S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen.Genet. 1984, 198 (1), 179−82.(20) Rodrigues, M. L.; Nimrichter, L.; Oliveira, D. L.; Frases, S.;Miranda, K.; Zaragoza, O.; Alvarez, M.; Nakouzi, A.; Feldmesser, M.;Casadevall, A. Vesicular polysaccharide export in Cryptococcusneoformans is a eukaryotic solution to the problem of fungal transcellwall transport. Eukaryotic Cell 2007, 6 (1), 48−59.Journal of Proteome Research ArticleDOI: 10.1021/acs.jproteome.6b00605J. Proteome Res. XXXX, XXX, XXX−XXXQ(21) Oliveira, D. L.; Nakayasu, E. S.; Joffe, L. S.; Guimaraes, A. J.;Sobreira, T. J.; Nosanchuk, J. D.; Cordero, R. J.; Frases, S.; Casadevall,A.; Almeida, I. C.; Nimrichter, L.; Rodrigues, M. L. Characterization ofyeast extracellular vesicles: evidence for the participation of differentpathways of cellular traffic in vesicle biogenesis. PLoS One 2010, 5 (6),e11113.(22) Eisenman, H. C.; Frases, S.; Nicola, A. M.; Rodrigues, M. L.;Casadevall, A. Vesicle-associated melanization in Cryptococcus neoformans.Microbiology 2009, 155 (Pt 12), 3860−7.(23) Wessel, D.; Flugge, U. I. A method for the quantitative recoveryof protein in dilute solution in the presence of detergents and lipids.Anal. Biochem. 1984, 138 (1), 141−3.(24) Vizcaino, J. A.; Cote, R. G.; Csordas, A.; Dianes, J. A.; Fabregat,A.; Foster, J. M.; Griss, J.; Alpi, E.; Birim, M.; Contell, J.; O’Kelly, G.;Schoenegger, A.; Ovelleiro, D.; Perez-Riverol, Y.; Reisinger, F.; Rios,D.; Wang, R.; Hermjakob, H. The PRoteomics IDEntifications(PRIDE) database and associated tools: status in 2013. Nucleic AcidsRes. 2013, 41 (Database issue), D1063−9.(25) Ramos-Fernandez, A.; Paradela, A.; Navajas, R.; Albar, J. P.Generalized method for probability-based peptide and proteinidentification from tandem mass spectrometry data and sequencedatabase searching. Mol. Cell. Proteomics 2008, 7 (9), 1748−54.(26) Lopez-Serra, P.; Marcilla, M.; Villanueva, A.; Ramos-Fernandez,A.; Palau, A.; Leal, L.; Wahi, J. E.; Setien-Baranda, F.; Szczesna, K.;Moutinho, C.; et al. A DERL3-associated defect in the degradation ofSLC2A1 mediates the Warburg effect. Nat. Commun. 2014, 5, 5.(27) Bhatia, V. N.; Perlman, D. H.; Costello, C. E.; McComb, M. E.Software tool for researching annotations of proteins: open-sourceprotein annotation software with data visualization. Anal. Chem. 2009,81 (23), 9819−23.(28) Benito-Martin, A.; Peinado, H. FunRich proteomics softwareanalysis, let the fun begin! Proteomics 2015, 15 (15), 2555−6.(29) Petersen, T. N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP4.0: discriminating signal peptides from transmembrane regions. Nat.Methods 2011, 8 (10), 785−786.(30) Bendtsen, J. D.; Kiemer, L.; Fausboll, A.; Brunak, S. Nonclassicalprotein secretion in bacteria. BMC Microbiol. 2005, 5, 58.(31) Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.;Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.;Gangoda, L.; Mathivanan, S. ExoCarta: A Web-Based Compendium ofExosomal Cargo. J. Mol. Biol. 2016, 428, 688.(32) Diez-Orejas, R.; Molero, G.; Moro, M. A.; Gil, C.; Nombela, C.;Sanchez-Perez, M. Two different NO-dependent mechanisms accountfor the low virulence of a non-mycelial morphological mutant ofCandida albicans. Med. Microbiol. Immunol. 2001, 189 (3), 153−160.(33) Thery, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.;Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecularcharacterization of dendritic cell-derived exosomes: Selective accumulationof the heat shock protein hsc73. J. Cell Biol. 1999, 147 (3), 599−610.(34) Ung, T. H.; Madsen, H. J.; Hellwinkel, J. E.; Lencioni, A. M.;Graner, M. W. Exosome proteomics reveals transcriptional regulatorproteins with potential to mediate downstream pathways. Cancer Sci.2014, 105 (11), 1384−92.(35) Martínez-Solano, L.; Reales-Calderón, J. A.; Nombela, C.;Molero, G.; Gil, C. Proteomics of RAW 264.7 macrophages uponinteraction with heat-inactivated Candida albicans cells unravel an antiinflammatoryresponse. Proteomics 2009, 9 (11), 2995−3010.(36) Reales-Calderon, J. A.; Martinez-Solano, L.; Martinez-Gomariz,M.; Nombela, C.; Molero, G.; Gil, C. Sub-proteomic study onmacrophage response to Candida albicans unravels new proteinsinvolved in the host defense against the fungus. J. Proteomics 2012, 75(15), 4734−46.(37) Mizoguchi, E. Chitinase 3-like-1 exacerbates intestinalinflammation by enhancing bacterial adhesion and invasion in colonicepithelial cells. Gastroenterology 2006, 130 (2), 398−411.(38) Volck, B.; Price, P. A.; Johansen, J. S.; Sorensen, O.; Benfield, T.L.; Nielsen, H. J.; Calafat, J.; Borregaard, N. YKL-40, a mammalianmember of the Chitinase family, is a matrix protein of specific granulesin human neutrophils. Proc. Assoc. Am. Physicians 1998, 110 (4), 351−360.(39) Rehli, M.; Niller, H. H.; Ammon, C.; Langmann, S.;Schwarzfischer, L.; Andreesen, R.; Krause, S. W. Transcriptionalregulation of CHI3L1, a marker gene for late stages of macrophagedifferentiation. J. Biol. Chem. 2003, 278 (45), 44058−67.(40) Lee, J. H.; Kim, S. S.; Kim, I. J.; Song, S. H.; Kim, Y. K.; In Kim,J.; Jeon, Y. K.; Kim, B. H.; Kwak, I. S. Clinical implication of plasmaand urine YKL-40, as a proinflammatory biomarker, on early stage ofnephropathy in type 2 diabetic patients. J. Diabetes Complications 2012,26 (4), 308−12.(41) Di Rosa, M.; Malaguarnera, G.; De Gregorio, C.; Drago, F.;Malaguarnera, L. Evaluation of CHI3L-1 and CHIT-1 expression indifferentiated and polarized macrophages. Inflammation 2013, 36 (2),482−92.(42) Johansen, J. S. Studies on serum YKL-40 as a biomarker indiseases with inflammation, tissue remodelling, fibroses and cancer.Dan. Med. Bull. 2006, 53 (2), 172−209.(43) Cario, E.; Gerken, G.; Podolsky, D. K. Toll-like receptor 2controls mucosal inflammation by regulating epithelial barrierfunction. Gastroenterology 2007, 132 (4), 1359−74.(44) Heimesaat, M. M.; Fischer, A.; Siegmund, B.; Kupz, A.;Niebergall, J.; Fuchs, D.; Jahn, H. K.; Freudenberg, M.;Loddenkemper, C.; Batra, A.; Lehr, H. A.; Liesenfeld, O.; Blaut, M.;Gobel, U. B.; Schumann, R. R.; Bereswill, S. Shift towards proinflammatoryintestinal bacteria aggravates acute murine colitis viaToll-like receptors 2 and 4. PLoS One 2007, 2 (7), e662.(45) Barone, R.; Simpore, J.; Malaguarnera, L.; Pignatelli, S.;Musumeci, S. Plasma chitotriosidase activity in acute Plasmodiumfalciparum malaria. Clin. Chim. Acta 2003, 331 (1−2), 79−85.(46) Soria, G.; Ben-Baruch, A. The inflammatory chemokines CCL2and CCL5 in breast cancer. Cancer Lett. 2008, 267 (2), 271−285.(47) Devalaraja, M. N.; Richmond, A. Multiple chemotactic factors:fine control or redundancy? Trends Pharmacol. Sci. 1999, 20 (4), 151−156.(48) Mantovani, A. The chemokine system: redundancy for robustoutputs. Immunology Today 1999, 20 (6), 254−257.(49) Renkema, G. H.; Boot, R. G.; Muijsers, A. O.; Donkerkoopman,W. E.; Aerts, J. M. F. G. Purification and Characterization of HumanChitotriosidase, a Novel Member of the Chitinase Family of Proteins.J. Biol. Chem. 1995, 270 (5), 2198−2202.(50) Cozzarini, E.; Bellin, M.; Norberto, L.; Polese, L.; Musumeci, S.;Lanfranchi, G.; Paoletti, M. G. CHIT1 and AMCase expression inhuman gastric mucosa: correlation with inflammation and Helicobacterpylori infection. Eur. J. Gastroenterol. Hepatol. 2009, 21 (10), 1119−26.(51) Nair, M. G.; Gallagher, L. J.; Taylor, M. D.; Loke, P.; Coulson,P. S.; Wilson, R. A.; Maizels, R. M.; Allen, J. E. Chitinase and Fizzfamily members are a generalized feature of nematode infection withselective Upregulation of Ym1 and F10.1 by antigen-presenting cells.Infect. Immun. 2005, 73 (1), 385−394.(52) Di Rosa, M.; De Gregorio, C.; Malaguarnera, G.; Tuttobene, M.;Biazzo, F.; Malaguarnera, L. Evaluation of AMCase and CHIT-1expression in monocyte macrophages lineage. Mol. Cell. Biochem. 2013,374 (1−2), 73−80.(53) Shen, C. R.; Juang, H. H.; Chen, H. S.; Yang, C. J.; Wu, C. J.;Lee, M. H.; Hwang, Y. S.; Kuo, M. L.; Chen, Y. S.; Chen, J. K.; Liu, C.L. The Correlation between Chitin and Acidic Mammalian Chitinasein Animal Models of Allergic Asthma. Int. J. Mol. Sci. 2015, 16 (11),27371−27377.(54) Boulland, M. L.; Marquet, J.; Molinier-Frenkel, V.; M?ller, P.;Guiter, C.; Lasoudris, F.; Copie-Bergman, C.; Baia, M.; Gaulard, P.;Leroy, K.; Castellano, F. Human IL4I1 is a secreted L-phenylalanineoxidase expressed by mature dendritic cells that inhibits T-lymphocyteproliferation. Blood 2007, 110 (1), 220−227.(55) Marquet, J.; Lasoudris, F.; Cousin, C.; Puiffe, M. L.; Martin-Garcia, N.; Baud, V.; Chereau, F.; Farcet, J. P.; Molinier-Frenkel, V.;Castellano, F. Dichotomy between factors inducing the immunosuppressiveenzyme IL-4-induced gene 1 (IL4I1) in B lymphocytes andmononuclear phagocytes. Eur. J. Immunol. 2010, 40 (9), 2557−2568.Journal of Proteome Research ArticleDOI: 10.1021/acs.jproteome.6b00605J. Proteome Res. XXXX, XXX, XXX−XXXR(56) Yue, Y. P.; Huang, W.; Liang, J. J.; Guo, J.; Ji, J.; Yao, Y. L.;Zheng, M. Z.; Cai, Z. J.; Lu, L. R.; Wang, J. L. IL4I1 Is a NovelRegulator of M2Macrophage Polarization That Can Inhibit T CellActivation via L-Tryptophan and Arginine Depletion and IL-10Production. PLoS One 2015, 10 (11), e0142979.(57) Benes, P.; Maceckova, V.; Zdrahal, Z.; Konecna, H.;Zahradnickova, E.; Muzik, J.; Smarda, J. Role of vimentin in regulationof monocyte/macrophage differentiation. Differentiation 2006, 74 (6),265−276.(58) Mor-Vaknin, N.; Punturieri, A.; Sitwala, K.; Markovitz, D. M.Vimentin is secreted by activated macrophages. Nat. Cell Biol. 2002, 5(1), 59−63.(59) Perlson, E.; Michaelevski, I.; Kowalsman, N.; Ben-Yaakov, K.;Shaked, M.; Seger, R.; Eisenstein, M.; Fainzilber, M. Vimentin bindingto phosphorylated Erk sterically hinders enzymatic dephosphorylationof the kinase. J. Mol. Biol. 2006, 364 (5), 938−44.(60) Mor-Vaknin, N.; Punturieri, A.; Sitwala, K.; Faulkner, N.;Legendre, M.; Khodadoust, M. S.; Kappes, F.; Ruth, J. H.; Koch, A.;Glass, D.; Petruzzelli, L.; Adams, B. S.; Markovitz, D. M. The DEKnuclear autoantigen is a secreted chemotactic factor. Mol. Cell. Biol.2006, 26 (24), 9484−9496.(61) Saha, A. K.; Kappes, F.; Mundade, A.; Deutzmann, A.;Rosmarin, D. M.; Legendre, M.; Chatain, N.; Al-Obaidi, Z.; Adams,B. S.; Ploegh, H. L.; Ferrando-May, E.; Mor-Vaknin, N.; Markovitz, D.M. Intercellular trafficking of the nuclear oncoprotein DEK. Proc. Natl.Acad. Sci. U. S. A. 2013, 110 (17), 6847−6852.(62) Etienne-Manneville, S.; Hall, A. Rho GTPases in cell biology.Nature 2002, 420 (6916), 629−35.(63) Medrano-Fernandez, I.; Reyes, R.; Olazabal, I.; Rodriguez, E.;Sanchez-Madrid, F.; Boussiotis, V. A.; Reche, P. A.; Cabanas, C.;Lafuente, E. M. RIAM (Rap1-interacting adaptor molecule) regulatescomplement-dependent phagocytosis. Cell. Mol. Life Sci. 2013, 70(13), 2395−410.(64) Cammas, L.; Wolfe, J.; Choi, S. Y.; Dedhar, S.; Beggs, H. E.Integrin-linked kinase deletion in the developing lens leads to capsulerupture, impaired fiber migration and non-apoptotic epithelial cell NO Unión Europea. FP7 NO Ministerio de Economía y Competitividad (MINECO) NO Comunidad de Madrid NO Instituto de Salud Carlos III DS Docta Complutense RD 5 may 2024