TY - JOUR AU - Bernárdez Vilaboa, Ricardo AU - Povedano Montero, Francisco Javier AU - Trillo, José Ramón AU - Ruiz Pomeda, Alicia AU - Martínez Florentín, Gema AU - Cedrún Sánchez, Juan Enrique PY - 2025 DO - 10.3390/photonics12070711 UR - https://hdl.handle.net/20.500.14352/123225 T2 - Photonics AB - Background/Objective: This study aims to evaluate the predictive performance of three supervised machine learning algorithms—decision tree (DT), support vector machine (SVM), and k-nearest neighbors (KNN) in forecasting key visual skills relevant to... LA - eng PB - MDPI KW - Eye tracking KW - Machine learning KW - Visual performance KW - Rhythmic gymnastics KW - Decision tree classification KW - Biomedical optics TI - AI-Based Prediction of Visual Performance in Rhythmic Gymnasts Using Eye-Tracking Data and Decision Tree Models TY - journal article ER -