RT Journal Article T1 On some properties of Banach spaces. (Spanish: Sobre algunas propiedades de espacios de Banach) A1 Bombal Gordón, Fernando AB This paper is devoted to an exposition of the two main methods used to introduce isomorphic properties of Banach spaces. The first one consists in the comparison of different classes of operators; the second in the comparison of different classes of subsets. For instance, it is well known that a Banach space E is finite-dimensional if and only if every bounded linear operator on E is compact if and only if every closed, bounded subset of E is compact. The first method, introduced by Grothendieck, is based upon the following general scheme: Let Φ,Ψ be two classes of bounded linear operators between Banach spaces and E a class of Banach spaces. Then E is said to have property P(Φ,Ψ,E) if Φ(E,F)⊆Ψ(E,F) for all F∈E ; if E is the class of all Banach spaces one simply writes E∈P(Φ,Ψ) . The author considers the following classes of operators: K(E,F)= compact operators; W(E,F)= weakly compact operators; DP(E,F)= Dunford-Pettis operators; D(E,F)= Dieudonné operators; UC(E,F)= unconditionally convergent operators; L(E,F)= bounded linear operators. Then he gives the following definition: A Banach space E (i) has the Dunford-Pettis property if E∈P(W,DP) ; (ii) has the reciprocal Dunford-Pettis property if E∈P(DP,W) ; (iii) has the Dieudonné property if E∈P(D,W) ; (iv) has property (V) if E∈P(UC,W) ; (v) has the Schur property if E∈P(L,DP) ; (vi) is weakly sequentially complete if E∈P(L,D) ; (vii) does not contain copies of c 0 if E∈P(L,UC) ; (viii) does not contain copies of l 1 if E∈P(DP,K) ; (ix) has the Grothendieck property if E∈P(L,W,c 0 ) . The author also shows that the above properties are always inherited by finite products and complemented subspaces, whereas quotients or closed subspaces inherit them just in special cases. Then the author treats the second method of introducing isomorphic properties, by considering several classes of subsets of a Banach space E , namely: K(E)= relatively compact subsets; W(E)= weakly relatively compact subsets; WC(E)= weakly conditionally compact subsets; B(E)= bounded subsets; L ∗ (E)= limited subsets; DP(E)= Dunford-Pettis subsets; V ∗ (E)=V ∗ subsets. He shows that the inclusion of one of them into another is useful for giving a different formulation of the above definition (example: E has the Dunford-Pettis property if W(E)⊆DP(E) ) as well as for introducing new properties (example: E is said to have the Gelʹfand-Phillips property if L ∗ (E)⊆K(E) ). Several results about this second method are then presented. PB Real Academia de Ciencias Exactas, Físicas y Naturales SN 0034-0596 YR 1990 FD 1990 LK https://hdl.handle.net/20.500.14352/57906 UL https://hdl.handle.net/20.500.14352/57906 LA spa NO K. T. ANDREWS. I Dunford-PetUs sets in the space of Bochner integrable functions. Math. Ann., 241 (1979), 35-41.F. BOMBAL.: Dos nuevas clases de espacios de Banach. Aparecerá en el volumen homenaje al Prof. N. Hayeck.F. BOMBAL.: On embedding h as a complemented subspace of Orlicz vector-valued function spaces. Rev. Mat. Univ. Complutense, 1 (1988), 13-17.F. BOMBAL.: On (V*) sets and Pelczynski's property ( F * ). Glasgow Math. J., 32 (1990), 109-120.F. BOMBAL.; On Pelczynski's property {v* ) in vector sequence spaces. Coll. Math., 39 (1988), 141-148.J. BOURGAIN Y F. DELBAEN.: A class of special X spaces. Acta Math., 145 (1981), 155-176.J. BOURGAIN Y J. DlESTEL.." Limited operators and strict cosingularity. Math. Nachr., 119(1984), 55-58.J. DlESTEL.: Sequences and series in Banach spaces. Graduate texts in Math., No. 92, Springer, 1984.L. DREWNOWSKI.: On Banach spaces with the Gelfand-Phillips property. Math. Zeitschrift 193 (1986), 405-411.N. DUNFORD Y J. T. SCHWARTZ,.: Linear operators. Part L Intersciense, New York and London, 1958.J. DlESTEL Y C. J. SEIFERT.: The Banach Saks ideal. L Operators acting on C(Q). Commen. Math., Tomus in Honorem L. Orlicz, I, 109-118.W. J. DAVIS, T. FIGIEL, W. B. JOHNSON Y A. PELCZYNSKI.: Factoringweakly compact operators. J. Funct. Anal. 17 (1974), 311-327.G. EMMANUELE. : The (BD) property in L^ (/i, É). Indiana Univ. Math. J., 36 (1987), 229-230.G. EMMANUELE.: On the Banach spaces with the property ( F * ) of Pelczynski. Annali Mat. Pura e Applicata, (1988), 171-181.G. EMMANUELE.: On the Banach spaces with the property ( F * ) of Pelczynski. IL Aparecerá en Ann. Mat. Pura Appl.A. GROTHENDIECK.: Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math., 5 (1953), 129-173.R. B. HOLMES.: Geometric functional analysis and its applications. Springer-Verlag, Berlin, 1977.J. HORVATH.: Topological vector spaces and distributions. Addison Wesley, Reading, Mass. 1966.T. LEAVELLE.: The Reciprocal Dunford-Pettis property. To appear in Ann. Mat. Pura e Appl.J. LiNDENSTRAUSS Y L. TZAFRIRI.: Classical Banach Spaces. Springer-Verlag, Berlin-New York. Vol. I, 1977; Vol. II, 1979.C. P. NiCULESCU.: Weak compactness in Banach lattices. J. Operator Theory, 9 (1981), 217-231.A. PELCZYNSKI.: on Banach spaces on which every unconditionally convergent operator is weakly compact. Bull. Acad. Pol. Sci., 10 (1962), 641-648.A. PELCZYNSKI.: On strictly singular and strictly consingular operators. L Bull. Acad. Pol. Sci., 13 (1965), 31-36.P. PETHE Y N . T H A K A R E, : A note on the Dunford-Pettis property and the Schur property. Indiana Univ. J. Math., 27 (1978), 91-92.W. RUDIN.: Real and complex analysis. 3a. Ed., Mc Graw Hill, 1987.C. STEGALL.I Duals of certain spaces with the Dunford-Pettis property. Notices of the A.M.S. 19 (1972), 799.T. SCHLUMPRECHT.: Limitierte Mengen in Banachraumen. Thesis. Ludwig-Maximilians Universitat, München, 1988.L. TZAFRIRL.: Reflexivity in Banach lattices and their supspaces. J. Funct. Anal., 10 (1972), 1-18. DS Docta Complutense RD 28 abr 2024