RT Journal Article T1 A maximum principle for evolution Hamilton-Jacobi equations on Riemannian manifolds A1 Azagra Rueda, Daniel A1 Ferrera Cuesta, Juan A1 López-Mesas Colomina, Fernando AB We establish a maximum principle for viscosity subsolutions and supersolutions of equations of the form u(t) + F(t, d(x)u) = 0, u(0, x) = u(0)(x), where u(0): M -> R is a bounded uniformly continuous function, M is a Riemannian manifold, and F: [0, infinity) x T*M -> R. This yields uniqueness of the viscosity solutions of such Hamilton-Jacobi equations. PB Elsevier SN 0022-247X YR 2006 FD 2006-11-01 LK https://hdl.handle.net/20.500.14352/49821 UL https://hdl.handle.net/20.500.14352/49821 LA eng NO Marie Curie Intra-European Fellowship of the European Community, Human Resources and Mobility Programme DS Docta Complutense RD 14 may 2025