RT Journal Article T1 Horofunction extension and metric compactifications A1 Daniilidis, A. A1 Garrido Carballo, María Isabel A1 Jaramillo Aguado, Jesús Ángel A1 Tapia García, Sebastián AB A necessary and sufficient condition for the horofunction extension (X, d) [X comma d bar, superscript h] of a metric space (X, d) to be a compactification is hereby established. The condition clarifies previous results on proper metric spaces and geodesic spaces and yields the following characterization: a Banach space is Gromovcompactifiable under any renorming if and only if it does not contain an isomorphic copy of 1. In addition, it is shown that, up to an adequate renorming, every Banach space is Gromov-compactifiable. Therefore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz equivalence. PB American Mathematical Society SN 2330-0000 YR 2025 FD 2025 LK https://hdl.handle.net/20.500.14352/128485 UL https://hdl.handle.net/20.500.14352/128485 LA eng NO Ministerio de Ciencia, Innovación y Universidades NO Austrian Science Fund DS Docta Complutense RD 20 ene 2026