RT Journal Article T1 Modeling Spin Transport in Helical Fields: Derivation of an Effective Low-Dimensional Hamiltonian A1 Gutierrez, R. A1 Díaz García, Elena A1 Gaul, Christopher A1 Brumme, T. A1 Domínguez-Adame Acosta, Francisco A1 Cuniberti, G. AB This study is devoted to a consistent derivation of an effective model Hamiltonian to describe spin transport along a helical pathway and in the presence of spin-orbit interaction, the latter being induced by an external field with helical symmetry. It is found that a sizable spin polarization of an unpolarized incoming state can be obtained without introducing phase breaking processes. For this, at least two energy levels per lattice site in the tight-binding representation are needed. Additionally, asymmetries in the effective electronic-coupling parameters as well as in the spin-orbit interaction strength must be present to achieve net polarization. For a fully symmetric system-in terms of electronic and spin-orbit couplings-no spin polarization is found. The model presented is quite general and is expected to be of interest for the treatment of spin-dependent effects in molecular scale systems with helical symmetry. PB Amer Chemical Soc SN 1932-7447 YR 2013 FD 2013-10-31 LK https://hdl.handle.net/20.500.14352/34750 UL https://hdl.handle.net/20.500.14352/34750 LA eng NO © Amer Chemical Soc.The authors thank Ron Naaman for very enlightening discussions on spin-dependent effects in helical systems. This work was supported by the German Academic Exchange Service (DAAD - project reference nr. 54367888) and by Ministerio de Economía y Comptetitividad (MINECO - PRI-AIBDE-2011-0.927) within the joint program Acciones Integradas. Computational resources were provided by the ZIH at TU-Dresden. T.B. thanks the International Max Planck Research School Dynamical Processes in Atoms, Molecules and Solids for financial support. E.D, C.G. and F.D-A were further supported by MINECO (MAT 2010-17180), and research of C.G. was funded by a PICATA postdoctoral fellowship from the Moncloa Campus of International Excellence (UCM-UPM). We gratefully acknowledge support from the German Excellence Initiative via the Cluster of Excellence EXC 1056 ”Center for Advancing Electronics Dresden” (cfAED). This research was partially supported by World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31- 10100). NO German Academic Exchange Service (DAAD) NO Ministerio de Economa y Comptetitividad NO International Max Planck Research School Dynamical Processes in Atoms, Molecules and Solids NO MINECO NO UCM-UPM NO Center for Advancing Electronics Dresden (cfAED) NO Ministry of Education, Science and Technology NO National Research Foundation of Korea DS Docta Complutense RD 5 jun 2025