RT Journal Article T1 Energy and large time estimates for nonlinear porous medium ow with nonlocal pressure in RN A1 Dao, Nguyen Anh A1 Díaz, Ildefonso Jesús AB We study the general family of nonlinear evolution equations of fractional diffusive type [delta]u-div(|u|m1[nabla]([delta]-s||u||m2-1u|= f. Such type of nonlocal equationsare related to the porous medium equations with a fractional Laplacian pressure.Our study concerns the case in which the ow takes place in the whole space. We consider m1;m2 > 0, and s 2 (0; 1), and prove existence of weak solutions. Moreover, when f _ 0 we obtain the Lp-L1 decay estimates of solutions, for p _ 1. Besides, we also investigate the _nite time extinction of solution. Our results improve the recent papers in the literature. PB Springer SN 0003-9527 YR 2020 FD 2020-06-12 LK https://hdl.handle.net/20.500.14352/7242 UL https://hdl.handle.net/20.500.14352/7242 LA eng NO ANTONTSEV, S., DÍAZ, J.I., SHMAREV, S.: Energy Methods for Free Boundary Problems. Applications to nonlinear PDEs and Fluid Mechanics. Series Progress in Nonlinear Differential Equations and Their Applications, No. 48. Birkhäuser, Boston 2002BÉNILAN, Ph, CRANDALL, M.G.: The continuous dependence on φ of solutions of ut−Δφ(u)=0. Indiana Univ. Math. J. 30, 161–177, 1981BILER, P., IMBERT, C., KARCH, G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529, 2015BONFORTE, M., FIGALLI, A., ROS-OTÓN, X.: Infinite speed of propagation and regularity of solutions to the fractional porous medium equation in general domains. Commun. Pure Appl. Math. 70(8), 1472–1508, 2017BONFORTE, M., FIGALLI, A., VÁZQUEZ, J.L.: Sharp global estimates for local and nonlocal porous medium-type equations in bounded domains. Anal. PDE11, 945–982, 2018BONFORTE, M., SIRE, Y., VÁZQUEZ, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete Contin. Dyn. Syst. 35(12), 5725–5767, 2015BONFORTE, M., VÁZQUEZ, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284, 2014BONFORTE, M., VÁZQUEZ, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218, 317–362, 2015CAFFARELLI, L., SILVESTRE, L.: An extension problem related to the fractional Laplacian. Commun. PDEs32, 1245–1260, 2007CAFFARELLI, L.A., SORIA, F., VÁZQUEZ, J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15, 1701–1746, 2013CAFFARELLI, L.A., VÁZQUEZ, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565, 2011CAFFARELLI, L.A., VÁZQUEZ, J.L.: Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Syst. A. 29, 1393–1404, 2011CAFFARELLI, L., STINGA, P.R.: Fractional elliptic equations: Caccioppoli estimates and regularity. Ann. Inst. Henri Poincaré (C) Anal. Non Linéaire33, 767–807, 2016CONSTANTIN, P., IGNATOVA, M.: Remarks on the fractional Laplacian with Dirichlet boundary conditions and applications. Int. Math. Res. Not. 6, 1–21, 2016DAO, N.A., DÍAZ, J.I., KHA, H.V.: Complete quenching phenomenon and instantaneous shrinking of support of solutions of degenerate parabolic equations with nonlinear singular absorption. Proc. R. Soc. Edinb. 149, 1323–1346, 2019DAVIES, E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109, 319–333, 1987De PABLO, A., QUIRÓS, F., RODRÍGUEZ, A., VÁZQUEZ, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409, 2011De PABLO, A., QUIRÓS, F., RODRÍGUEZ, A., VÁZQUEZ, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284, 2012DÍAZ, J.I., GÓMEZ-CASTRO, D., VÁZQUEZ, J.L.: The fractional Schrödinger equation with general nonnegative potentials. The weighted space approach. Nonlinear Anal. 177, 325–360, 2018DOLBEAULT, J., ZHANG, A.: Flows and functional inequalities for fractional operators. Appl. Anal. 96(9), 1547–1560, 2017NGUYEN, Q.-H., VÁZQUEZ, J.L.: Porous medium equation with nonlocal pressure in a bounded domain. Commun. PDEs43, 1502–1539, 2018PORRETTA, A.: Existence results for nonlinear parabolic equations via strong convergence of truncations. Annali di Matematica pura ed applicata. (IV)CLXXVII, 143–172, 1999RAKOTOSON, J.M., TEMAM, R.: An optimal compactness theorem and application to elliptic–parabolic systems. Appl. Math. Lett. 14, 303–306, 2001SERFATY, S., VÁZQUEZ, J.L.: A mean field equation as limit of nonlinear diffusion with fractional Laplacian operators. Calc. Var. PDEs49, 1091–1120, 2014SIMON, J.: Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. 146, 65–96, 1987STAN, D., del TESO, F., VÁZQUEZ, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. J. Differ. Equ. 260, 1154–1199, 2016STAN, D., del TESO, F., VÁZQUEZ, J.L.: Existence of weak solutions for porous medium equations with nonlocal pressure. Arch. Ration. Mech. Anal. 233(1), 451–496, 2019STEIN, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton 1970STINGA, P.R., TORREA, J.L.: Extension problem and Harnack inequality for some fractional operators. Commun. PDE35, 2092–2122, 2010Taylor, M.E.: Partial Differential Equations. III: Nonlinear Equations, 2nd edn, xxii, p. 715. Applied Mathematical Sciences 117. Springer, New York (2011)VÁZQUEZ, J.L.: The Porous Medium Equation. Mathematical Theory Oxford Mathematical Monographs. Oxford University Press, Oxford 2007VÁZQUEZ, J.L., de PABLO, A., QUIRÓS, F., RODRÍGUEZ, A.: Classical solutions and higher regularity for nonlinear fractional diffusion equations. J. Eur. Math. Soc. 19, 1949–1975, 2017ZHANG, Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182, 416–430, 2002 DS Docta Complutense RD 2 dic 2023