RT Journal Article T1 Disjointly strictly-singular inclusions between rearrangement invariant spaces A1 García del Amo Jiménez, Alejandro José A1 Hernández, Francisco L. A1 Sánchez de los Reyes, Víctor Manuel A1 Semenov, Evgeny M. AB A linear operator between two Banach spaces X and Y is strictly-singular (or Kato) if it fails to be an isomorphism on any infinite dimensional subspace. A weaker notion for Banach lattices introduced in [8] is the following one: an operator T from a Banach lattice X to a Banach space Y is said to be disjointly strictly-singular if there is no disjoint sequence of non-null vectors (xn)n∈N in X such that the restriction of T to the subspace [(xn)∞n=1] spanned by the vectors (xn)n∈N is an isomorphism. Clearly every strictly-singular operator is disjointly strictly-singular but the converse is not true in general (consider for example the canonic inclusion Lq[0, 1]↪Lp[0, 1] for 1≤p