RT Journal Article T1 Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90 A1 Campanero, Cristina A1 Dzung B. Diep, A1 Arbulu, Sara A1 Del Campo, Rosa A1 Ingolf F. Nes, A1 Cintas Izarra, Luis Miguel A1 Muñoz Atienza, Estefanía A1 Feito Hermida, Javier A1 Hernández Cruza, Pablo Elpidio A1 Herranz Sorribes, Carmen A2 Anirudh K. Singh, AB Streptococcus pneumoniae infections are one of the major causes of morbility and mortality worldwide. Although vaccination and antibiotherapy constitute fundamental and complementary strategies against pneumococcal infections, they present some limitations including the increase in non-vaccine serotypes and the emergence of multidrug-resistances,respectively. Ribosomally-synthesized antimicrobial peptides (i.e. bacteriocins) produced by Lactic Acid Bacteria (LAB) may represent an alternative or complementary strategy toantibiotics for the control of pneumococal infections. We tested the antimicrobial activity of 37 bacteriocinogenic LAB, isolated from food and other sources, against clinical S. pneumoniae strains. Streptococcus infantarius subsp. infantarius LP90, isolated from Venezuelan water-buffalo milk, was selected because of its broad and strong anti-pneumococcal spectrum. The in vitro safety assessment of S. infantarius LP90 revealed that it may be considered avirulent. The analysis of a 19,539-bp cluster showed the presence of 29 putative open reading frames (ORFs), including the genes encoding 8 new class II-bacteriocins, as well as the proteins involved in their secretion, immunity and regulation. Transcriptional analyses evidenced that the induction factor (IF) structural gene, the bacteriocin/IF transporter genes, the bacteriocin structural genes and most of the bacteriocin immunity genes were transcribed. MALDI-TOF analyses of peptides purified using different multichromatographic procedures revealed that the dairy strain S. infantarius LP90 produces at least 6 bacteriocins,including infantaricin A1, a novel anti-pneumococcal two-peptide bacteriocin. PB Public Library of Science (PLOS) SN 1932-6203 YR 2020 FD 2020-03 LK https://hdl.handle.net/20.500.14352/108728 UL https://hdl.handle.net/20.500.14352/108728 LA eng NO Campanero, C., Muñoz-Atienza, E., Diep, D. B., Feito, J., Arbulu, S., Del Campo, R., Nes, I. F., Hernández, P. E., Herranz, C., & Cintas, L. M. (2020). Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantarius LP90. PLOS ONE, 15(3), e0229417. https://doi.org/10.1371/journal.pone.0229417 NO Ministerio de Ciencia, Innovación y Universidades (España) NO Ministerio de Economía y Competitividad (España) NO Comunidad de Madrid NO Junta de Galicia NO Universidad Complutense de Madrid DS Docta Complutense RD 3 abr 2025