RT Journal Article T1 The norm of the Riemann-Liouville operator on L-p[0,1]: A probabilistic approach A1 Adell, José A. A1 Gallardo Gutiérrez, Eva Antonia AB We obtain explicit lower and upper bounds for the norm of the Riemann-Liouville operator V-s on L-p[0, 1] which are asymptotically sharp, thus completing previous results by Eveson. Similar statements are shown with respect to the norms parallel to V-s f parallel to(p), whenever f satisfies certain smoothness properties. It turns out that the correct rate of convergence of parallel to V-s f parallel to(p) as s -> infinity depends both on the infimum of the support of f and on the degree of smoothness of f. We use a probabilistic approach which allows us to give unified proofs. PB London Mathematical Society SN 1469-2120 YR 2007 FD 2007 LK https://hdl.handle.net/20.500.14352/50600 UL https://hdl.handle.net/20.500.14352/50600 LA eng NO Adell, J. A. & Gallardo Gutiérrez, E. A. «The Norm of the Riemann-Liouville Operator on L p [0,1]: A Probabilistic Approach». Bulletin of the London Mathematical Society, vol. 39, n.o 4, agosto de 2007, pp. 565-74. DOI.org (Crossref), https://doi.org/10.1112/blms/bdm041. NO Fondo Europeo de Desarrollo Regional NO Plan Nacional I+D NO Gobierno de Aragón research group on Análisis matemático y aplicaciones DS Docta Complutense RD 16 abr 2025