RT Generic T1 The roll of placental growth in the prediction of preeclampsia in asymptomatic women:systematic review of the literature and meta-analysis. Hierarchical models for meta-analysis of diagnostic test accuracy A1 Gil Mira, María del Mar YR 2021 FD 2021-09 LK https://hdl.handle.net/20.500.14352/5149 UL https://hdl.handle.net/20.500.14352/5149 LA eng NO 1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol 2013; 170: 1–7.2. Say L, Chou D, Gemmill A, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health 2014; 2: e323–33.3. Ananth CV, Keyes KM, Wapner RJ. Pre-eclampsia rates in the United States, 1980-2010: age-period-cohort analysis. BMJ 2013; 347: f6564.4. WHO. Trends in maternal mortality: 1990 to 2015. Estimates by WHO, UNICEF, UNFPA, The World Bank and the United Nations Population Division. 2015.http://apps.who.int/iris/bitstream/10665/194254/1/9789241565141_eng.pdf?ua=1 (accessed April 1, 2021).5. Zhang J, Meikle S, Trumble A. Severe maternal morbidity associated with hypertensive disorders in pregnancy in the United States. Hypertens Pregnancy 003; 22: 203–12.6. ACOG. Gestational hypertension and preeclampsia: ACOG practice bulletin, number 222. Obstet Gynecol 2020; 135: e237–60.7. National Institute for Health and Care Excellence. Hypertension in pregnancy:diagnosis and management. June 25, 2019.https://www.nice.org.uk/guidance/NG133 (accessed April 1, 2021).8. Brown MA, Magee LA, Kenny LC, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis, and management recommendations for international practice. Hypertension 2018; 13: 291–310.9. Lowe SA, Bowyer L, Lust K, et al. The SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol 2015; 55: 11–16.10. Magee LA, Pels A, Helewa M, Rey E, von Dadelszen P. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. J Obstet Gynaecol Can 2014; 36: 575–76.11. Levytska K, Higgins M, Keating S, et al. Placental pathology in relation to uterine artery Doppler findings in pregnancies with severe intrauterine growth restrictionand abnormal umbilical artery Doppler changes. Am J Perinatol 2017; 34: 451– 57.12. Bartsch E, Medcalf KE, Park AL, Ray JG. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ 2016; 353: i1753.13. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 2005; 330: 565.14. Ernst LM. Maternal vascular malperfusion of the placental bed. APMIS 2018; 126: 551–60.15. Wright E, Audette MC, Ye XY, et al. Maternal vascular malperfusion and adverse perinatal outcomes in low-risk nulliparous women. Obstet Gynecol 2017; 130: 1112–20.16. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009; 30: 473–82.17. Rana S, Lemoine E, Granger JP, Karumanchi SA. preeclampsia: pathophysiology, challenges, and perspectives. Circ Res 2019; 124: 1094–112.18. Burton GJ, Yung HW, Cindrova-Davies T, Charnock-Jones DS. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia.Placenta 2009; 30 (suppl A): 43–48.19. Zur RL, Kingdom JC, Parks WT, Hobson SR. The placental basis of fetal growth restriction. Obstet Gynecol Clin North Am 2020; 47: 81–98.20. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–58.21. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 2004; 350: 672–83.22. Redman CW, Sargent IL, Staff AC. IFPA senior award lecture: making sense of pre-eclampsia - two placental causes of preeclampsia? Placenta 2014;(35 suppl):S20–S25.23. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, andproteinuria in preeclampsia. J Clin Invest 2003; 111: 649–658.24. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstr.m M, Olovsson M, Brennecke SP, Stepan H, Allegranza D, et al. Predictive value of the sFlt-1:PlGFratio in women with suspected preeclampsia. N Engl J Med 2016; 374: 13–22.25. Perales A, Delgado JL, de la Calle M, García-Hernández JA, Escudero AI, Campillos JM, Sarabia MD, La.z B, Duque M, Navarro M, et al; STEPS Investigators. sFlt-1/PlGF for prediction of early-onset pre-eclampsia: STEPS (Study of Early Pre-eclampsia in Spain). Ultrasound Obstet Gynecol 2017; 50: 373–382.26. Sovio U, Gaccioli F, Cook E, Hund M, Charnock-Jones DS, Smith GC. Prediction of preeclampsia using the soluble fms-Like tyrosine kinase 1 to placental growth factor ratio: a prospective Cohort Study of unselected nulliparous women.Hypertension 2017; 69: 731–738.27. Sabria E, Lequerica-Fern.ndez P, Ganuza PL, Angeles EE, Escudero AI, Martínez-Morillo E, Alvarez FV. Use of the sFlt-1/PlGF ratio to rule out preeclampsia requiring delivery in women with suspected disease. Is theevidence reproducible? Clin Chem Lab Med 2018; 56: 303–311.28. Agrawal S, Cerdeira AS, Redman C, Vatish M. Meta-Analysis and systematic review to assess the role of soluble FMS-like tyrosine kinase-1 and placenta growth factor ratio in prediction of preeclampsia: The SaPPPhirE Study.Hypertension 2018; 71: 306–316.29. Stepan H, Geipel A, Schwarz F, Kr.mer T, Wessel N, Faber R. Circulatory soluble endoglin and its predictive value for preeclampsia in secondtrimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol 2008; 198:175.e1–175.e6.30. Page, M.J., McKenzie, J.E., Bossuyt, P.M. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 2021;10, 89.31. Poon L, Gil MM, Chaemsaithong P, Cuenca D, Plasencia W, Chaiyasit N, Zamora J. Accuracy of PlGF alone or in combination with sFlt-1 or maternal factors in detecting preeclampsia in symptomatic and/or asymptomatic women: systematic review and meta-analysis. PROSPERO: international prospective register of systematic reviews 2020: CRD 42020162460. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020162460(accessed Sep 17, 2021).32. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011; 155: 529–536.33. Hanley JA. Receiver operating characteristic (ROC) methodology: the state of the art. Critical Reviews in Diagnostic Imaging 1989; 29:307–335.34. Goff BA, Muntz HG, Paley PJ, Tamimi HK, Koh WJ, Greer BE. Impact of surgical staging in women with locally advanced cervical cancer. Gynecologic Oncology 1999; 74:436–442.35. Holcomb K, Abula6a O, Matthews RP, Gabbur N, Lee YC, Buhl A. The impact of pretreatment staging laparotomy on survival in locally advanced cervical carcinoma. European Journal of Gynaecological Oncology 1999; 20:90 – 93.36. Rutter CM, Gatsonis CA. Regression methods for meta-analysis of diagnostic test data. Academic Radiology 1995; 2(S1): S48-S56.37. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Stat Med 2001; 20: 2865-84.38. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JAC. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007; 8: 239-251.39. Madazli R, Kuseyrioglu B, Uzun H, Uludag S, Ocak V. Prediction of preeclampsia with maternal mid-trimester placental growth factor, activin A, fibronectin anduterine artery Doppler velocimetry. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2005; 89: 251-7.40. Espinoza J, Romero R, Nien JK, Gomez R, Kusanovic JP, Goncalves LF, et al.Identification of patients at risk for early onset and/or severe preeclampsia withthe use of uterine artery Doppler velocimetry and placental growth factor. Am J Obstet Gynecol 2007; 196: 326.e1-13.41. Stepan H, Unversucht A, Wessel N, Faber R. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertens Dallas Tex 1979 2007; 49: 818-24.42. Diab AE, El-Behery MM, Ebrahiem MA, Shehata AE. Angiogenic factors for the prediction of pre-eclampsia in women with abnormal midtrimester uterine artery Doppler velocimetry. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2008; 102: 146-51.43. Ohkuchi A, Hirashima C, Matsubara S, Takahashi K, Matsuda Y, Suzuki M. Threshold of soluble fms-like tyrosine kinase 1/placental growth factor ratio for the imminent onset of preeclampsia. Hypertens Dallas Tex 1979 2011; 58: 859- 66.44. Shaker OG, Shehata H. Early prediction of preeclampsia in high-risk women. J Womens Health 2002 2011; 20: 539-44.45. Ghosh SK, Raheja S, Tuli A, Raghunandan C, Agarwal S. Combination of uterine artery Doppler velocimetry and maternal serum placental growth factor estimation in predicting occurrence of pre-eclampsia in early second trimester pregnancy: a prospective cohort study. Eur J Obstet Gynecol Reprod Biol 2012; 161: 144-51.46. Diguisto C, Le Gouge A, Piver E, Giraudeau B, Perrotin F. Second-trimester uterine artery Doppler, PlGF, sFlt-1, sEndoglin, and lipid-related markers for predicting preeclampsia in a high-risk population. Prenat Diagn 2013; 33: 1070-4.47. Garcia-Tizon Larroca S, Tayyar A, Poon LC, Wright D, Nicolaides KH. Competing risks model in screening for preeclampsia by biophysical and biochemical markers at 30-33 weeks’ gestation. Fetal Diagn Ther 2014; 36: 9-17.48. Hanita O, Alia NN, Zaleha AM, Nor Azlin MI. Serum soluble FMS-like tyrosine kinase 1 and placental growth factor concentration as predictors of preeclampsiain high risk pregnant women. Malays J Pathol. abril de 2014; 36: 19-26.49. Lai J, Garcia-Tizon Larroca S, Peeva G, Poon LC, Wright D, Nicolaides KH. Competing risks model in screening for preeclampsia by serum placental growth factor and soluble fms-like tyrosine kinase-1 at 30-33 weeks’ gestation. FetalDiagn Ther. 2014; 35: 240-8.50. Park HJ, Kim SH, Jung YW, Shim SS, Kim JY, Cho YK, et al. Screening models using multiple markers for early detection of late-onset preeclampsia in low-riskpregnancy. BMC Pregnancy Childbirth. 20 de enero de 2014; 14:35.51. Andersen LB, Dechend R, Jorgensen JS, Luef BM, Nielsen J, Barington T, et al. Prediction of preeclampsia with angiogenic biomarkers. Results from the prospective Odense Child Cohort. Hypertens Pregnancy. agosto de 2016;35(3):405-19.52. Andrietti S, Silva M, Wright A, Wright D, Nicolaides KH. Competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 35-37 weeks’ gestation. Ultrasound Obstet Gynecol 2016; 48: 72-9.53. Chaiworapongsa T, Romero R, Whitten AE, Korzeniewski SJ, Chaemsaithong P, Hernandez-Andrade E, et al. The use of angiogenic biomarkers in maternal blood to identify which SGA fetuses will require a preterm delivery and mothers whowill develop pre-eclampsia. J Matern-Fetal Neonatal Med 2016; 29: 1214-28.54. Gallo DM, Wright D, Casanova C, Campanero M, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19-24 weeks’ gestation. Am J Obstet Gynecol. mayo de 2016; 214: 619.e1-619.e17.55. Kienast C, Moya W, Rodriguez O, Jijon A, Geipel A. Predictive value of angiogenic factors, clinical risk factors and uterine artery Doppler for preeclampsiaand fetal growth restriction in second and third trimester pregnancies in an Ecuadorian population. J Matern-Fetal Neonatal Med 2016; 29: 537-43. DS Docta Complutense RD 30 abr 2024