TY - JOUR AU - Garnica Alcázar, Antonio Óscar AU - Gómez, Diego AU - Ramos, Víctor AU - Hidalgo González, José Ignacio AU - Ruiz Giardín, José Manuel PY - 2021 DO - 10.1007/s13167-021-00252-3 SN - 1878-5077 UR - https://hdl.handle.net/20.500.14352/4708 T2 - EPMA Journal AB - BackgroundThe bacteraemia prediction is relevant because sepsis is one of the most important causes of morbidity and mortality. Bacteraemia prognosis primarily depends on a rapid diagnosis. The bacteraemia prediction would shorten up to 6 days the... LA - eng M2 - 365 PB - Springer Nature KW - Predictive KW - Preventive and personalised medicine (PPPM/3PM) KW - Machine learning KW - Modelling KW - Bacteraemia diagnosis KW - Bacteraemia prediction KW - Blood culture’s outcome prediction KW - Individualised electronic patient record analysis KW - Personalised antibiotic treatment KW - Support vector machine KW - Random forest KW - K-Nearest neighbours KW - Healthcare economy KW - Health policy KW - COVID-19 TI - Diagnosing hospital bacteraemia in the framework of predictive, preventive and personalised medicine using electronic health records and machine learning classifiers TY - journal article VL - 12 ER -