RT Journal Article T1 Integral mappings between Banach spaces A1 Villanueva Díez, Ignacio AB We consider the classes of “Grothendieck-integral” (G-integral)and “Pietsch-integral” (P-integral) linear and multilinear operators (see definitions below), and we prove that a multilinear operator between Banach spaces is G-integral (resp. P-integral) if and only if its linearization is G-integral (resp. P-integral) on the injective tensor product of the spaces, together with some related results concerning certain canonically associated linear operators. As an application we give a new proof of a result on the Radon-Nikodym property of the dual of the injective tensor product of Banach spaces. Moreover, we give a simple proof of a characterization of the G-integral operators on C(K,X) spaces and we also give a partial characterization of P-integral operators on C(K,X) spaces. PB Elsevier SN 0022-247X YR 2003 FD 2003 LK https://hdl.handle.net/20.500.14352/56944 UL https://hdl.handle.net/20.500.14352/56944 LA eng NO Villanueva Díez, I. «Integral Mappings between Banach Spaces». Journal of Mathematical Analysis and Applications, vol. 279, n.o 1, marzo de 2003, pp. 56-70. DOI.org (Crossref), https://doi.org/10.1016/S0022-247X(02)00362-1. NO DGICYT DS Docta Complutense RD 21 abr 2025