RT Journal Article T1 Radial continuous valuations on star bodies A1 Villanueva Díez, Ignacio A1 Tradacete Pérez, Pedro AB We show that a radial continuous valuation defined on the n-dimensional star bodies extends uniquely to a continuous valuation on the n-dimensional bounded star sets. Moreover, we provide an integral representation of every such valuation, in terms of the radial function, which is valid on the dense subset of the simple Borel star sets. Along the way, we also show that every radial continuous valuation defined on the n-dimensional star bodies can be decomposed as a sum V=V+−V−, where both V+ and V− are positive radial continuous valuations. PB Elsevier SN 0022-247X YR 2017 FD 2017 LK https://hdl.handle.net/20.500.14352/17964 UL https://hdl.handle.net/20.500.14352/17964 LA eng NO Tradacete Pérez, P. & Villanueva Díez, I. «Radial Continuous Valuations on Star Bodies». Journal of Mathematical Analysis and Applications, vol. 454, n.o 2, octubre de 2017, pp. 995-1018. DOI.org (Crossref), https://doi.org/10.1016/j.jmaa.2017.05.026. NO Ministerio de Economía, Comercio y Empresa (España) NO Comunidad de Madrid DS Docta Complutense RD 9 abr 2025