RT Journal Article T1 Density-matrix Chern insulators: finite-temperature generalization of topological insulators A1 Rivas Vargas, Ángel A1 Viyuela García, Óscar A1 Martín-Delgado Alcántara, Miguel Ángel AB Thermal noise can destroy topological insulators (TI). However, we demonstrate how TIs can be made stable in dissipative systems. To that aim, we introduce the notion of band Liouvillian as the dissipative counterpart of band Hamiltonian, and show a method to evaluate the topological order of its steady state. This is based on a generalization of the Chern number valid for general mixed states (referred to as density-matrix Chern value), which witnesses topological order in a system coupled to external noise. Additionally, we study its relation with the electrical conductivity at finite temperature, which is not a topological property. Nonetheless, the density-matrix Chern value represents the part of the conductivity which is topological due to the presence of quantum mixed edge states at finite temperature. To make our formalism concrete, we apply these concepts to the two-dimensional Haldane model in the presence of thermal dissipation, but our results hold for arbitrary dimensions and density matrices. PB American Physical Society SN 1098-0121 YR 2013 FD 2013-10-31 LK https://hdl.handle.net/20.500.14352/35608 UL https://hdl.handle.net/20.500.14352/35608 LA eng NO © 2013 American Physical Society. We thank A. Dauphin for fruitful discussions. This work has been supported by the Spanish MINECO Grant No. FIS2012-33152, CAM research consortium QUITEMAD S2009-ESP1594, European Commission PICC: FP7 2007-2013, Grant No. 249958, UCM-BS Grant No. GICC-910758. NO Unión Europea. FP7 NO Ministerio de Economía y Competitividad (MINECO) NO Comunidad de Madrid NO Universidad Complutense de Madrid/Banco de Santander DS Docta Complutense RD 6 abr 2025