RT Journal Article T1 Parallel mutation testing for large scale systems A1 Cerro Cañizares, Pablo A1 Núñez Covarrubias, Alberto A1 Filgueira, Rosa A1 de Lara, Juan AB Mutation testing is a valuable technique for measuring the quality of test suites in terms of detecting faults. However, one of its main drawbacks is its high computational cost. For this purpose, several approaches have been recently proposed to speed-up the mutation testing process by exploiting computational resources in distributed systems. However, bottlenecks have been detected when those techniques are applied in large-scale systems. This work improves the performance of mutation testing using large-scale systems by proposing a new load distribution algorithm, and parallelising different steps of the process. To demonstrate the benefits of our approach, we report on a thorough empirical evaluation, which analyses and compares our proposal with existing solutions executed in large-scale systems. The results show that our proposal outperforms the state-of-the-art distribution algorithms up to 35% in three different scenarios, reaching a reduction of the execution time of—at best—up to 99.66%. PB Springer YR 2023 FD 2023-06-20 LK https://hdl.handle.net/20.500.14352/105660 UL https://hdl.handle.net/20.500.14352/105660 LA eng NO Proyectos del MINECO/FEDER con referencias PID2021-122270OB-I00, TED2021-129381B-C21 y PID2019-108528RB-C22 NO Proyecto de la Comunidad de Madrid "FORTE-CM" con referencia S2018/TCS-4314 NO Proyecto "BLOQUES-CM", con referencia S2018/TCS-4339, cofinanciado por los Fondos EIE de la Unión Europea y la Comunidad de Madrid NO Proyecto de HPC-EUROPA3 (referencia INFRAIA-2016-1-730897), con el apoyo de la Acción de Investigación e Innovación de la CE en el marco del Programa H2020 DS Docta Complutense RD 19 abr 2025