RT Journal Article T1 Psychometric functions for detection and discrimination with and without flankers. A1 García Pérez, Miguel Ángel A1 Alcalá Quintana, Rocío A1 Woods, Russell L A1 Peli, Eli AB Recent studies have reported that flanking stimuli broaden the psychometric function and lower detection thresholds. In the present study, we measured psychometric functions for detection and discrimination with and without flankers to investigate whether these effects occur throughout the contrast continuum. Our results confirm that lower detection thresholds with flankers are accompanied by broader psychometric functions. Psychometric functions for discrimination reveal that discrimination thresholds with and without flankers are similar across standard levels, and that the broadening of psychometric functions with flankers disappears as standard contrast increases, to the point that psychometric functions at high standard levels are virtually identical with or without flankers. Threshold-versus-contrast (TvC) curves with flankers only differ from TvC curves without flankers in occasional shallower dippers and lower branches on the left of the dipper, but they run virtually superimposed at high standard levels. We discuss differences between our results and other results in the literature, and how they are likely attributed to the differential vulnerability of alternative psychophysical procedures to the effects of presentation order. We show that different models of flanker facilitation can fit the data equally well, which stresses that succeeding at fitting a model does not validate it in any sense. PB Springer SN 1943-393X YR 2011 FD 2011-04 LK https://hdl.handle.net/20.500.14352/44905 UL https://hdl.handle.net/20.500.14352/44905 LA eng NO Adini, Y., & Sagi, D. (2001). Recurrent networks in human visual cortex: Psychophysical evidence. Journal of the Optical Society of America A, 18, 2228–2236. doi:10.1364/JOSAA.18.002228Adini, Y., Sagi, D., & Tsodyks, M. (1997). Excitatory–inhibitory network in the visual cortex: Psychophysical evidence. Proceedings of the National Academy of Sciences, 94, 10426–10431. doi:10.1073/pnas.94.19.10426Ahumada, A., & Scharff, L. (2007). Lines and dipoles are efficiently detected [Abstract]. Journal of Vision, 7(9), 337. doi:10.1167/7.9.337. (Handout available at http://vision.arc.nasa.gov/personnel/al/talks/07vss/handout.htm)Alcalá-Quintana, R., & García-Pérez, M. A. (2004). The role of parametric assumptions in adaptive Bayesian estimation. Psychological Methods, 9, 250–271.Alcalá-Quintana, R., & García-Pérez, M. A. (2005). Stopping rules in Bayesian adaptive threshold estimation. Spatial Vision, 18, 347–374. doi:10.1163/1568568054089375Alcalá-Quintana, R., & García-Pérez, M. A. (2010). A model for the time-order error in contrast discrimination. Quarterly Journal of Experimental Psychology (in press). doi:10.1080/17470218.2010.540018Alcalá-Quintana, R., Woods, R. L., Giorgi, R. G., & Peli, E. (2010). Lack of lateral interactions in people with central field loss. Manuscript submitted for publication.Bradley, E. L., & Blackwood, L. G. (1989). Comparing paired data: A simultaneous test for means and variances. American Statistician, 43, 234–235. doi:10.2307/2685368Cass, J. R., & Spehar, B. (2005). Dynamics of collinear contrast facilitation are consistent with long-range horizontal striate transmission. Vision Research, 45, 2728–2739. doi:10.1016/j.visres.2005.03.010Chen, C.-C., & Tyler, C. W. (2001). Lateral sensitivity modulation explains the flanker effect in contrast discrimination. Proceedings of the Royal Society of London. Series B, 268, 509–516. doi:10.1098/rspb.2000.1387Chen, C.-C., & Tyler, C. W. (2002). Lateral modulation of contrast discrimination: Flanker orientation effects. Journal of Vision, 2, 520–530. doi:10.1167/2.6.8Chen, C.-C., & Tyler, C. W. (2008). Excitatory and inhibitory interaction fields of flankers revealed by contrast-masking functions. Journal of Vision, 8, 1–14. doi:10.1167/8.4.10Faes, F., Nollo, G., Ravelli, F., Ricci, L., Vescovi, M., Turatto, M., et al. (2007). Small-sample characterization of stochastic approximation staircases in forced-choice adaptive threshold estimation. Perception & Psychophysics, 69, 254–262.Fechner, G. T. (1860/1966). Elements of psychophysics. New York: Holt.Foley, J. M. (1994). Human luminance pattern–vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A, 11, 1710–1719. doi:10.1364/JOSAA.11.001710Foley, J. M., & Schwarz, W. (1998). Spatial attention: Effect of position and number of distractor patterns on the threshold-versus-contrast function for contrast discrimination. Journal of the Optical Society of America A, 15, 1036–1047. doi:10.1364/JOSAA.15.001036García-Pérez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881. doi:10.1016/S0042-6989(97)00340-4García-Pérez, M. A. (2000). Optimal setups for forced-choice staircases with fixed step sizes. Spatial Vision, 13, 431–448. doi:10.1163/156856800741306García-Pérez, M. A. (2001). Yes–no staircases with fixed step sizes: Psychometric properties and optimal setup. Optometry and Vision Science, 78, 56–64.García-Pérez, M. A. (2010). Denoising forced-choice detection data. The British Journal of Mathematical and Statistical Psychology, 63, 75–100. doi:10.1348/000711009X424057García-Pérez, M. A., & Alcalá-Quintana, R. (2005). Sampling plans for fitting the psychometric function. The Spanish Journal of Psychology, 8, 256–289.García-Pérez, M. A., & Alcalá-Quintana, R. (2007a). Bayesian adaptive estimation of arbitrary points on a psychometric function. The British Journal of Mathematical and Statistical Psychology, 60, 147–174. doi:10.1348/000711006X104596García-Pérez, M. A., & Alcalá-Quintana, R. (2007b). The transducer model for contrast detection and discrimination: Formal relations, implications, and an empirical test. Spatial Vision, 20, 5–43. doi:10.1163/156856807779369724García-Pérez, M. A., & Alcalá-Quintana, R. (2009). Fixed vs. variable noise in 2AFC contrast discrimination: Lessons from psychometric functions. Spatial Vision, 22, 273–300. doi:10.1163/156856809788746309García-Pérez, M. A., & Alcalá-Quintana, R. (2010a). Reminder and 2AFC tasks provide similar estimates of the difference limen: A re-analysis of data from Lapid, Ulrich, & Rammsayer (2008) and a discussion of Ulrich & Vorberg (2009). Attention, Perception, & Psychophysics, 72, 1155–1178. doi:10.3758/APP.72.4.1155García-Pérez, M. A., & Alcalá-Quintana, R. (2010b). The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies, 25, 876–898. doi:10.1111/j.1745-459X.2010.00310.xGarcía-Pérez, M. A., Giorgi, R. G., Woods, R. L., & Peli, E. (2005). Thresholds vary between spatial and temporal forced-choice paradigms: The case of lateral interactions in peripheral vision. Spatial Vision, 18, 99–127. doi:10.1163/1568568052801591García-Pérez, M. A., & Peli, E. (2001). Luminance artifacts of cathode-ray tube displays for vision research. Spatial Vision, 14, 201–215. doi:10.1163/156856801300202931Gilchrist, J. M., Jerwood, D., & Ismaiel, H. S. (2005). Comparing and unifying slope estimates across psychometric function models. Perception & Giorgi, R., Soong, G. P., Woods, R. L., & Peli, E. (2004). Facilitation of contrast detection in near-peripheral vision. Vision Research, 44, 3193–3202. doi:10.1016/j.visres.2004.06.024Huang, P.-C., & Hess, R. F. (2007). Collinear facilitation: Effect of additive and multiplicative external noise. Vision Research, 47, 3108–3119. doi:10.1016/j.visres.2007.08.007Huang, P.-C., Mullen, K. T., & Hess, R. F. (2007). Collinear facilitation in color vision. Journal of Vision, 7, 1–14. doi:10.1167/7.11.6Kaernbach, C. (2001). Adaptive threshold estimation with unforced-choice tasks. Perception & Psychophysics, 63, 1377–1388.Katkov, M., Tsodyks, M., & Sagi, D. (2006a). Analysis of a two-alternative forced-choice signal detection theory model. Journal of Mathematical Psychology, 50, 411–420. doi:10.1016/j.jmp.2005.11.002Katkov, M., Tsodyks, M., & Sagi, D. (2006b). Singularities in the inverse modeling of 2AFC contrast discrimination data. Vision Research, 46, 259–266. doi:10.1016/j.visres.2005.09.022Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729–2737. doi:10.1016/S0042-6989(98)00285-5Meese, T. S., & Baker, D. H. (2009). Cross-orientation masking is speed invariant between ocular pathways but speed dependent between them. Journal of Vision, 9, 1–15. doi:10.1167/9.5.2Morgan, M. J., & Dresp, B. (1995). Contrast detection facilitation by spatially separated targets and inducers. Vision Research, 35, 1019–1024. doi:10.1016/0042-6989(94)00216-9Nelson, M. A., & Halberg, R. L. (1979). Visual contrast sensitivity functions obtained with colored and achromatic gratings. Human Factors, 21, 225–228.Numerical Algorithms Group. (1999). NAG Fortran library manual, Mark 19. Oxford: Author.Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast detection and discrimination. Journal of the Optical Society of America A, 2, 1508–1532. doi:10.1364/JOSAA.2.001508Petrov, Y., Verghese, P., & McKee, S. P. (2006). Collinear facilitation is largely uncertainty reduction. Journal of Vision, 6, 170–178. doi:10.1167/6.2.8Polat, U. (1999). Functional architecture of long-range perceptual interactions. Spatial Vision, 12, 143–162. doi:10.1163/156856899X00094Polat, U. (2009). Effect of spatial frequency on collinear facilitation. Spatial Vision, 22, 179–193. doi:10.1163/156856809787465609.Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33, 993–999. doi:10.1016/0042-6989(93)90081-7Polat, U., & Sagi, D. (1994a). Spatial interactions in human vision: From near to far via experience-dependent cascades of connections. Proceedings of the National Academy of Sciences, 91, 1206–1209. doi:10.1073/pnas.91.4.1206Polat, U., & Sagi, D. (1994b). The architecture of perceptual spatial interactions. Vision Research, 34, 73–78. doi:10.1016/0042-6989(94)90258-5Polat, U., & Sagi, D. (2006). Temporal asymmetry of collinear lateral interactions. Vision Research, 46, 953–960. doi:10.1016/j.visres.2005.09.031Shani, R., & Sagi, D. (2005). Eccentricity effects on lateral interactions. Vision Research, 45, 2009–2024. doi:10.1016/j.visres.2005.01.024Shani, R., & Sagi, D. (2006). Psychometric curves of lateral facilitation. Spatial Vision, 19, 413–426. doi:10.1163/156856806778457386Solomon, J. A., & Morgan, M. J. (2000). Facilitation from collinear flanks is cancelled by non-collinear flanks. Vision Research, 40, 279–286. doi:10.1016/S0275-5408(99)00059-9Solomon, J. A., Watson, A. B., & Morgan, M. J. (1999). Transducer model produces facilitation from opposite-sign flanks. Vision Research, 39, 987–992. doi:10.1016/S0042-6989(98)00143-6Summers, R. J., & Meese, T. S. (2009). The influence of fixation points on contrast detection and discrimination of patches of grating: Masking and facilitation. Vision Research, 49, 1894–1900. doi:10.1016/j.visres.2009.04.027Swift, D., Panish, S., & Hippensteel, B. (1997). The use of VisionWorks™ in visual psychophysics research. Spatial Vision, 10, 471–477. doi:10.1163/156856897X00401Tanaka, Y., & Sagi, D. (1998). Long-lasting, long-range detection facilitation. Vision Research, 38, 2591–2599.Ulrich, R., & Vorberg, D. (2009). Estimating the difference limen in 2AFC tasks: Pitfalls and improved estimators. Attention, Perception, & Psychophysics, 71, 1219–1227. doi:10.3758/APP.71.6.1219Urban, F. M. (1910). The method of constant stimuli and its generalizations. Psychological Review, 17, 229–259. doi:10.1037/h0074515Watanabe, A., Mori, T., Nagata, S., & Hiwatashi, K. (1968). Spatial sine-wave responses of the human visual system. Vision Research, 8, 1245–1263. doi:10.1016/0042-6989(68)90031-XWatson, C. S., Kellogg, S. C., Kawanishi, D. T., & Lucas, P. A. (1973). The uncertain response in detection-oriented psychophysics. Journal of Experimental Psychology, 99, 180–185. doi:10.1037/h0034736Watson, A. B., & Pelli, D. G. (1983). QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33, 113–120.Williams, C. B., & Hess, R. F. (1998). Relationship between facilitation at threshold and suprathreshold contour integration. Journal of the Optical Society of America A, 15, 2046–2051. doi:10.1364/JOSAA.15.002046Woods, R. L., Nugent, A. K., & Peli, E. (2002). Lateral interactions: Size does matter. Vision Research, 42, 733–745. doi:10.1016/S0042-6989(01)00313-3Wu, C.-C., & Chen, C.-C. (2010). Distinguishing lateral interaction from uncertainty reduction in collinear flanker effect on contrast discrimination. Journal of Vision, 10, 1–14. doi:10.1167/10.3.8Yu, C., Klein, S. A., & Levi, D. M. (2002). Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. Journal of Vision, 2, 243–255. doi:10.1167/2.3.4Yu, C., Klein, S. A., & Levi, D. M. (2003). Cross- and iso-oriented surrounds modulate the contrast response function: The effect of surround contrast. Journal of Vision, 3, 527–540. doi:10.1167/3.8.1Zenger-Landolt, B., & Koch, C. (2001). Flanker effects in peripheral contrast discrimination: Psychophysics and modeling. Vision Research, 41, 3663–3675. doi:10.1016/S0042-6989(01)00175-4.Zulauf, M., Flammer, J., & Signer, C. (1988). Spatial brightness contrast sensitivity measured with white, green, red and blue light. Ophthalmologica, 196, 43–48. doi:10.1159/000309874 NO Ministerio Ciencia e Innovación (MICINN) NO Ministerio de Educación y Ciencia (MEC) DS Docta Complutense RD 9 may 2024