RT Journal Article T1 Topological characterisation of weakly compact operators A1 Peralta Pereira, Antonio Miguel A1 Villanueva, Ignacio A1 Wright, J. D. Maitland A1 Ylinen, Kari AB Let X be a Banach space. Then there is a locally convex topology for X, the “Right topology,” such that a linear map T, from X into a Banach space Y, is weakly compact, precisely when T is a continuous map from X, equipped with the “Right” topology, into Y equipped with the norm topology. When T is only sequentially continuous with respect to the Right topology, it is said to be pseudo weakly compact. This notion is related to Pelczynski's Property (V). PB Elsevier SN 0022-247X YR 2007 FD 2007-01-15 LK https://hdl.handle.net/20.500.14352/49796 UL https://hdl.handle.net/20.500.14352/49796 LA eng NO [1] Ch.-H. Chu, P. Mellan, JB *-triples have Pelczynski's Property V, Manuscripta Math. 93 (3) (1997) 337-347.[2] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer, New York, 1984.[3] N. Dunford, J.T. Schwartz, Linear Operators (vol. I), Interscience, New York, 1967.[4] G. Kothe, Topological VectorSpaces, Springer, 1969.[5] J. Qiu, Local completeness and dual local quasi-completeness, Proc. Amer. Math. Soco 129 (2000) 1419-1425.[6] A.P. Robertson, W.J. Robertson, Topological Vector Spaces, Cambridge University Press, 1973.[7] M. Takesaki, 1beory of Operator Algebras 1, Springer, New York, 1979.[8] J.D.M. Wright, K. Ylinen, Multilinear maps on products of operator algebras, J. Math. Anal. Appl. 292 (2004) 558-570. NO I+D MCYT NO Junta de Andalucía DS Docta Complutense RD 16 abr 2024