RT Journal Article T1 The sensitivity of superrotation to the satitude of baroclinic forcing in a terrestrial dry dynamical core A1 Zurita Gotor, Pablo A1 Anaya Benlliure, Álvaro A1 Held, Isaac M. AB Previous studies have shown that Kelvin-Rossby instability is a viable mechanism for producing equatorial superrotation in small and/or slowly rotating planets. It is shown in this paper that this mechanism can also produce superrotation with terrestrial parameters when the baroclinic forcing moves to low latitudes, explaining previous results by Williams. The transition between superrotating and subrotating flow occurs abruptly as the baroclinic forcing moves poleward. Although Kelvin-Rossby instability weakens when the baroclinic zone moves away from the equator, the key factor explaining the abrupt transition is the change in the baroclinic eddies. When differential heating is contained within the tropics, baroclinic eddies do not decelerate the subtropical jet and the upper-tropospheric flow approximately conserves angular momentum, providing conditions favorable for Kelvin-Rossby instability. In contrast, when baroclinic eddies are generated in the extratropics, they decelerate the subtropical jet and prevent the Kelvin-Rossby coupling. Due to this sensitivity to baroclinic eddies the system exhibits hysteresis: near the transition parameter, extratropical eddies can prevent superrotation when they are initially present. PB American Meteorological Society SN 0022-4928 YR 2022 FD 2022-05 LK https://hdl.handle.net/20.500.14352/72665 UL https://hdl.handle.net/20.500.14352/72665 LA eng NO © 2022 American Meteorological Society. This work was funded by the National Science Foundation, grant AGS-1733818. P.Z-G acknowledges funding by Santander UCM Grant PR87/19-22537 for the workstation in which the simulations were performed. We thank J. Schröttle and two anonymous reviewers for suggestions that improved the manuscript. NO Universidad Complutense de Madrid/Banco de Santander NO National Science Foundation DS Docta Complutense RD 10 abr 2025