RT Journal Article T1 Interpolating Blaschke products and angular derivatives A1 Gallardo Gutiérrez, Eva Antonia AB We show that to each inner function, there corresponds at least one interpolating Blaschke product whose angular derivatives have precisely the same behavior as the given inner function. We characterize the Blaschke products invertible in the closed algebra H-infinity[(b) over bar : b has finite angular derivative everywhere]. We study the most well-known example of a Blaschke product with infinite angular derivative everywhere and show that it is an interpolating Blaschke product. We conclude the paper with a method for constructing thin Blaschke products with infinite angular derivative everywhere. PB American Mathematical Society SN 0002-9947 YR 2012 FD 2012 LK https://hdl.handle.net/20.500.14352/43771 UL https://hdl.handle.net/20.500.14352/43771 LA eng NO Gallardo Gutiérrez, E. A. «Interpolating Blaschke Products and Angular Derivatives». Transactions of the American Mathematical Society, vol. 364, n.o 5, mayo de 2012, pp. 2319-37. DOI.org (Crossref), https://doi.org/10.1090/S0002-9947-2012-05535-8. NO Gobierno de Aragón research group Análisis Matemático y Aplicaciones DS Docta Complutense RD 10 abr 2025