RT Journal Article T1 Rota’s universal operators and invariant subspaces in Hilbert spaces A1 Cowen, Carl C. A1 Gallardo Gutiérrez, Eva Antonia AB A Hilbert space operator is called universal (in the sense of Rota) if every operator on the Hilbert space is similar to a multiple of the restriction of the universal operator to one of its invariant subspaces. We exhibit an analytic Toeplitz operator whose adjoint is universal in the sense of Rota and commutes with a quasi-nilpotent injective compact operator with dense range. In articular, this new universal operator invites an approach to the Invariant Subspace Problem that uses properties of operators that commute with the universal operator. PB Elsevier SN 0022-1236 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/24609 UL https://hdl.handle.net/20.500.14352/24609 LA eng NO Cowen, C. C., & Gallardo Gutiérrez, E. A. «Rota’s Universal Operators and Invariant Subspaces in Hilbert Spaces». Journal of Functional Analysis, vol. 271, n.o 5, septiembre de 2016, pp. 1130-49. DOI.org (Crossref), https://doi.org/10.1016/j.jfa.2016.05.018. NO Ministerio de Economía, Comercio y Empresa (España) DS Docta Complutense RD 27 abr 2025