%0 Journal Article %A Martínez Matos, Óscar %A Vaveliuk, Pablo %T Negative propagation effect in nonparaxial Airy beams %D 2012 %@ 1094-4087 %U https://hdl.handle.net/20.500.14352/44150 %X Negative propagation is an unusual effect concerning the local sign change in the Poynting vector components of an optical beam under free propagation. We report this effect for finite-energy Airy beams in a subwavelength nonparaxial regime. This effect is due to a coupling process between propagating and evanescent plane waves forming the beam in the spectral domain and it is demonstrated for a single TE or TM mode. This is contrary to what happens for vector Bessel beams and vector X-waves, for which a complex superposition of TE and TM modes is mandatory. We also show that evanescent waves cannot contribute to the energy flux density by themselves such that a pure evanescent Airy beam is not physically realizable. The break of the shape-preserving and diffraction-free properties of Airy beams in a nonparaxial regime is exclusively caused by the propagating waves. The negative propagation effect in subwavelength nonparaxial Airy beams opens new capabilities in optical traps and tweezers, optical detection of invisibility cloacks and selective on-chip manipulation of nanoparticles. %~