RT Journal Article T1 Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing A1 Carro Calvo, L. A1 Salcedo Sanz, S. A1 Kirchner Bossi, N. A1 Portilla Figueras, A. A1 Prieto, L. A1 García Herrera, Ricardo Francisco A1 Hernández Martín, E. AB In this paper we present an evolutionary approach for the problem of discovering pressure patterns under a quality measure related to wind speed and direction. This clustering problem is specially interesting for companies involving in the management of wind farms, since it can be useful for analysis of results of the wind farm in a given period and also for long-term wind speed prediction. The proposed evolutionary algorithm is based on a specific encoding of the problem, which uses a dimensional reduction of the problem. With this special encoding, the required centroids are evolved together with some other parameters of the algorithm. We define a specific crossover operator and two different mutations in order to improve the evolutionary search of the proposed approach. In the experimental part of the paper, we test the performance of our approach in a real problem of pressure pattern extraction in the Iberian Peninsula, using a wind speed and direction series in a wind farm in the center of Spain. We compare the performance of the proposed evolutionary algorithm with that of an existing weather types (WT) purely meteorological approach, and we show that the proposed evolutionary approach is able to obtain better results than the WT approach. PB Pergamon-Elsevier Ltd SN 0360-5442 YR 2011 FD 2011-03 LK https://hdl.handle.net/20.500.14352/43024 UL https://hdl.handle.net/20.500.14352/43024 LA eng NO © 2011 Elsevier Ltd. All rights reserved. This work has been partially supported by Spanish Ministry of Industry, Tourism and Trading, under an Avanza 2 project, number TSI-020100-2010-663. NO Ministerio de Industria, Comercio y Turismo DS Docta Complutense RD 10 abr 2025