%0 Journal Article %A Belonoshko, Anatoly B. %A Fu, Jie %A Bryk, Taras %A Simak, Sergei I. %A Mattesini, Maurizio %T Low viscosity of the Earth’s inner core %D 2019 %@ 2041-1723 %U https://hdl.handle.net/20.500.14352/13594 %X The Earth’s solid inner core is a highly attenuating medium. It consists mainly of iron. The high attenuation of sound wave propagation in the inner core is at odds with the widely accepted paradigm of hexagonal close-packed phase stability under inner core conditions, because sound waves propagate through the hexagonal iron without energy dissipation. Here we show by first-principles molecular dynamics that the body-centered cubic phase of iron, recently demonstrated to be thermodynamically stable under the inner core conditions, is considerably less elastic than the hexagonal phase. Being a crystalline phase, the bodycentered cubic phase of iron possesses the viscosity close to that of a liquid iron. The high attenuation of sound in the inner core is due to the unique diffusion characteristic of the body-centered cubic phase. The low viscosity of iron in the inner core enables the convection and resolves a number of controversies. %~