RT Journal Article T1 Low-magnesium uranium-calcite with high degree of crystallinity and gigantic luminescence emission A1 Valle Fuentes, Francisco José A1 García Guinea, Javier A1 Cremades Rodríguez, Ana Isabel A1 Correcher Delgado, Virgilio A1 Sánchez Moral, Sergio A1 Gon´zalez Martin, Rafael A1 Sánchez Muñoz, Luis A1 López Arce, Paula AB Cabrera (Madrid) low-Mg calcites exhibit: (i) an unusual twofold elevation in X-ray diffraction pattern intensity; (ii) a 60-fold elevation of luminescence emission, compared to six common natural calcites selected for comparison purposes; (iii) a natural relatively high radiation level of circa 200 nSv h^-1 not detected in 1300 other calcites from the Natural History Museum of Madrid. Calcites were analysed by the X-ray diffraction powder method (XRD), cathodo-luminescence spectroscopy in scanning electron microscopy (CL-SEM), thermoluminescence (TL), differential thermal analysis (DTA), X-ray fluorescence spectrometry (XRF) and particle size distribution (PSD). The Cabrera calcite study shows: (i) helicoidally distributed steps along the (0001) orientation; (ii) protuberance defects onto the (0001) surface, observed by SEM; (iii) XRF chemical contents of 0.03% MgO, 0.013% of Y_2O_3, and 0.022% of U_3O_8, with accessory amounts of rare earth elements (REE); (iv) DTA dissociation temperature of 879 degrees C; (v) TL maxima peaks at 233 and 297 degrees C whose areas are 60 times compared to other calcites; (vi) spectra CL-SEM bands at 2.0 and 3.4 eV in the classic structure of Mn^2+ activators; (vii) a twofold XRD pattern explained given that sample is a low-Mg calcite. The huge TL and CL emissions of the Cabrera calcite sample must be linked with the uranyl group presence. This intense XRD pattern in low-Mg calcites could bring into being analytical errors. PB Pergamon-Elsevier Science Ldt SN 0969-8043 YR 2007 FD 2007-01 LK https://hdl.handle.net/20.500.14352/50822 UL https://hdl.handle.net/20.500.14352/50822 LA eng NO Acharya, B.S., 1992. Quantitative-determination of minerals in Indian coal by X-ray-diffraction. Fuel 71, 346–348.Baietto, V., Villeneuve, G., Guibert, P., Schvoerer, M., 2000. EPR and TL correlation in some powdered Greek white marbles. Appl. Radiat. Isot. 52, 229–235.Botter-Jensen, L., Duller, G.A.T., Murray, A.S., Banerjee, D., 1999. Blue light emitting diodes for optical stimulation of quartz in retrospective dosimetry and dating. Radiat. Prot. Dosim. 84, 335–340.Calderon, T., Townsend, P.D., Beneitez, P., Garcia-Guinea, J., Millan, A., Rendell, H.M., Tookey, A., Urbina, M., Wood, R.A., 1996. Crystal field effects on the thermoluminescence of manganese in carbonate lattices. Radiat. Meas. 26, 719–731.Correcher, V., Delgado, A., 1998. On the use of natural quartz as transfer dosemeter in retrospective dosimetry. Radiat. Meas. 29, 411–414. Elzinga, E.J., Tait, C.D., Reeder, R.J., Rector, K.D., Donohoe, R.J., Morris, D.E., 2004. Spectroscopic investigation of U[VI] sorption at the calcite-water interface. Geochim. Cosmochim. Acta 68, 2437–2448.Engin, B., Guven, O., Koksal, F., 1999. Thermoluminescence and electron spin resonance properties of some travertines from Turkey. Appl. Radiat. Isot. 51, 729–746.Geipel, G., Reich, T., Brendler, V., Bernhard, G., Nitsche, H., 1997. Laser and X-ray spectroscopic studies of uranium–calcite interface phenomena. J. Nucl. Mater. 248, 408–411.Gunatila, H.A., Till, R., 1971. Precise and accurate method for quantitative determination of carbonate minerals by X-ray diffraction using a spiking technique. Min. Mag. 38, 481.Grun, R., Packman, S.C., 1994. Observations on the kinetics involved in the TL glow curves in quartz, K-feldspar and Na-feldspar mineral separates of sediments and their significance for dating studies. Radiat. Meas. 23, 317–322.Kahle, M., Kleber, M., Jahn, R., 2002. Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma 109, 191–205.Klockmann, F., 1978. Lehrbuch der Mineralogie. 16. Auage. Ferdinant Enke Verlag Stuttgart (A¨ uberarb. u. erw. von Paul Ramdohr und Hugo Strunz). ISBN 3-432-82986-8.Lozano, R.P., Bachiller, N., Casquet, C., 1997. Fluidos asociados a la formación de epidota+(clorita, cuarzo) en las pegmatitas del plutón de la Cabrera (Sistema Central Español). Geogaceta 21, 155–158.Lozano, R.P., Casquet, C., Gonzalez, R., 1999. Bolsadas pegmatiticas con cavidades rellenas de minerales hidrotermales en el plutón de La Cabrera (Sistema Central Español), modelo de evolucion. Bol. Soc. Esp. Miner. 22A, 63–64.Lozano, R.P., Gonzalez, R., Laguna, R., Gonzalez del Tanago, J., Casquet, C., 2000. Alteración hidrotermal en granitos de La Cabrera (Sistema Central Español), estudio de minerales accesorios en halos de cavidades rellenas de minerales ca´ lcicos. Cuad. Lab. Xeol. Laxe. 25, 329–331.Min, G.r., Edwards, R.l., Taylor, F.w., Recy, J., Gallup, C.d., Beck, J.w., 1995. Annual cycles of U/Ca in coral skeletons and u/ca thermometry. Geochim. Cosmochim. Acta 59, 2025–2042.Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73.Ouhadi, V.R., Yong, R.N., 2003. Impact of clay microstructure and mass absorption coefficient on the quantitative mineral identification by XRD analysis. Appl. Clay Sci. 23, 141–148.Reeder, R.J., 1996. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 60 (9), 1543–1552.Reeder, R.J., Nugent, M., Lamble, G.M., Tait, C.D., Morris, D.E., 2000. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34, 638–644.Reeder, R.J., Nugent, M., Tait, C.D., Morris, D.E., Heald, S.M., Beck, K.M., Hess, W.P., Lanzirotti, A., 2001. Coprecipitation of uranium[-VI] with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 65, 3491–3503.Russell, A.D., Emerson, S., Nelson, B.K., Erez, J., Lea, D.W., 1994. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim. Cosmochim. Acta 58, 671–681.Walenta, G., Fullmann, T., 2004. Advances in quantitative XRD analysis for clinker, cements, and cementitious additions. Powder Diffr. 19, 40–44.Ward, C.R., Taylor, J.C., Cohen, D.R., 1999. Quantitative mineralogy of sandstones by X-ray diffractometry and normative analysis. J. Sedim. Res. (A) 69, 1050–1062. NO © 2006 Elsevier Ltd. All rights reserved.The experiment was supported by the C.I.C.Y.T. CGL2004-03564/BTE, Communidad de Madrid, MATERNAS-S-0505/MAT/000094 and BFM2002-00048 Projects. Thanks are also due to Martin Fernandez (Colmenar Viejo, Madrid) for the valuable help in the Cabrera granite quarries for providing the calcite samples. The authors thank R. Schmidtling of the Museum Research Laboratory of the Getty Conservation Institute for the critical review of the manuscript. NO C.I.C.Y.T. NO Comunidad de Madrid DS Docta Complutense RD 29 abr 2024