RT Journal Article T1 Exchange bias in single-crystalline CuO nanowires A1 Piqueras de Noriega, Javier A1 Díaz-Guerra Viejo, Carlos A1 Vila Santos, María AB Exchange anisotropy has been observed and investigated in single-crystalline CuO nanowires grown by thermal oxidation of Cu. The exchange bias field decreases by increasing temperature and can be tuned by the strength of the cooling field. A training effect has also been observed. The obtained results can be understood in terms of a phenomenological core-shell model, where the core of the CuO nanowire shows antiferromagnetic behavior and the surrounding shell behaves as a spin glass-like system due to uncompensated surface spins. PB American Institute of Physics SN 0003-6951 YR 2010 FD 2010-05-10 LK https://hdl.handle.net/20.500.14352/44035 UL https://hdl.handle.net/20.500.14352/44035 LA eng NO 1. V. Franco-Puntes, K. M. Krishnan, and A. P. Alivisatos, Science 291, 2115 (2001). http://dx.doi.org/10.1126/science.10575532. A. Hultgren, M. Tanase, C. S. Chen, G. J. Meyer, and D. H. Reich, J. Appl. Phys. 93, 7554 (2003). http://dx.doi.org/10.1063/1.15562043. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).4. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). http://dx.doi.org/10.1016/S0304-8853(98)00266-25. C. Tsang, J. Appl. Phys. 55, 2226 (1984). http://dx.doi.org/10.1063/1.3336196. R. Jungblut, R. Coehoorn, M. T. Johnson, J. van de Stegge, and A. Reinders, J. Appl. Phys. 75, 6659 (1994). http://dx.doi.org/10.1063/1.3568887. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001). http://dx.doi.org/10.1103/PhysRevB.64.1744208. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, Nature (London) 423, 850 (2003). http://dx.doi.org/10.1038/nature016879. E. L. Salabaş, A. Rumplecker, F. Kleitz, F. Radu, and F. Schüth, Nano Lett. 6, 2977 (2006). http://dx.doi.org/10.1021/nl060528n10. J. Y. Yu, S. L. Tang, X. K. Zhang, L. Zhai, Y. G. Shi, Y. Deng, and Y. W. Du, Appl. Phys. Lett. 94, 182506 (2009). http://dx.doi.org/10.1063/1.313205611. J. B. Reitz and E. I. Solomon, J. Am. Chem. Soc. 120, 11467 (1998). http://dx.doi.org/10.1021/ja981579s12. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature (London) 407, 496 (2000). http://dx.doi.org/10.1038/3503504513. C. T. Hsieh, J. M. Chen, H. H. Lin, and C. H. Shih, Appl. Phys. Lett. 83, 3383 (2003). http://dx.doi.org/10.1063/1.161922914. M. A. García, E. Fernández Pinel, J. de la Venta, A. Quesada, V. Bouzas, J. F. Fernández, J. J. Romero, M. S. Martín González, and J. L. Costa-Krämer, J. Appl. Phys. 105, 013925 (2009). http://dx.doi.org/10.1063/1.306080815. X. Jiang, T. Herricks, and Y. Xia, Nano Lett. 2, 1333 (2002). http://dx.doi.org/10.1021/nl025751916. V. Salgueiriño-Maceira, M. A. Correa-Duarte, M. Bañobre-López, M. Grzelczak, M. Farle, L. M. Liz-Marzán, and J. Rivas, Adv. Funct. Mater. 18, 616 (2008). http://dx.doi.org/10.1002/adfm.20070084617. See supplementary material at http://dx.doi.org/10.1063/1.3428658 for ZFC and FC hysteresis loops measured at 2 K in the ±15000 Oe range and for field cycle dependence of Heb.[Supplementary Material] 18. E. C. Passamani, C. Larica, C. Marques, A. Y. Takeuchi, J. R. Proveti, and E. Favre-Nicolin, J. Magn. Magn. Mater. 314, 21 (2007). http://dx.doi.org/10.1016/j.jmmm.2007.02.00819. J. Nogués, C. Leighton, and I. K. Schuller, Phys. Rev. B 61, 1315 (2000). http://dx.doi.org/10.1103/PhysRevB.61.131520. M. Patra, S. Majumdar, and S. Giri, Solid State Commun. 149, 501 (2009). http://dx.doi.org/10.1016/j.ssc.2009.01.01921. L. Del Bianco, D. Fiorani, A. M. Testa, E. Bonetti, and L. Signorini, Phys. Rev. B 70, 052401 (2004). http://dx.doi.org/10.1103/PhysRevB.70.052401 NO ©2010 American Institute of Physics.This work was supported by MEC through projects MAT2006-01259 and MAT2009-07882. NO MEC (Ministerio de Educación y Ciencia, España) DS Docta Complutense RD 27 abr 2024