RT Journal Article T1 Scandium oxide deposited by high-pressure sputtering for memory devices: Physical and interfacial properties A1 Lucía Mulas, María Luisa A1 Prado Millán, Álvaro Del A1 San Andrés Serrano, Enrique A1 Feijoo, P.C. A1 Toledano-Luque, M. AB Scandium oxide (ScO(x)) thin layers are deposited by high-pressure sputtering (HPS) for physical and electrical characterization. Different substrates are used for comparison of several ScO(x)/Si interfaces. These substrates are chemical silicon oxide (SiO(x)), H-terminated silicon surface and silicon nitride (SiN(x)), obtained by either electron-cyclotron-resonance chemical vapor deposition or plasma enhanced nitridation of the Si surface. Transmission electron microscopy images show that a 1.7 nm thick SiO(x) layer grows when ScO(x) is deposited on H-terminated silicon surface. We demonstrate that interfacial SiN(x) has some advantages over SiO(x) used in this work: its permittivity is higher and it presents better interface quality. It also avoids Si oxidation. An improvement of one order of magnitude in the minimum of interface trap density is found for SiN(x) with respect to the SiO(x), reaching values below 2 x 10(11) cm(-2) eV(-1). HPS deposited ScO(x) films are polycrystalline with no preferential growth direction for the used deposition conditions and their properties do not depend on the substrate. This material could be a candidate for high-k material in flash memory applications. PB American Institute of Physics SN 0021-8979 YR 2010 FD 2010-04-15 LK https://hdl.handle.net/20.500.14352/44401 UL https://hdl.handle.net/20.500.14352/44401 LA eng NO © American Institute of Physics. The authors thank, “CAI de Técnicas Físicas,” “CAI de Espectroscopía y Espectrometría,” “CAI de Difracción de Rayos X,” and “CAI de Microscopía Electrónica” of the Universidad Complutense de Madrid for technical support. This work was possible thanks to the FPU grant (Grant No. AP2007-01157), the research projects TEC2007/63318 of the Spanish Ministry of Education, and Grant Nos. CCG07-UCM/TIC-2804 and GR58/08 (Universidad Complutense de Madrid). NO FPU program NO Spanish Ministry of Education NO Universidad Complutense de Madrid DS Docta Complutense RD 7 abr 2025