RT Journal Article T1 Resonant cavity modes in gallium oxide microwires A1 Inaki, Lopez A1 Nogales Díaz, Emilio A1 Méndez Martín, Bianchi AB Fabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the T-4(2)-(4)A(2) transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires. PB Amer Inst Physics SN 0003-6951 YR 2012 FD 2012-06-25 LK https://hdl.handle.net/20.500.14352/44042 UL https://hdl.handle.net/20.500.14352/44042 LA eng NO 1 J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaler, P. D. Yang, and R. J. Saykally, Nature Mater. 1, 106 (2002).2 S. Gradecak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, Appl. Phys. Lett. 87, 173111 (2005).3 B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, Appl. Phys. Lett. 91, 131112 (2007).4 J. C. Johnson, H. Yan, P. Yang, and R. J. Sakally, J. Phys. Chem. B 107, 8816 (2003).5 M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, Appl. Phys. Lett. 93, 051101 (2008).6 X. Ye, H. Mao, J. Wang, and Z. Zhu, Appl. Phys. Lett. 99, 261112 (2011). 7 C. Czekalla, C. Sturm, R. Schmidt-Grund, B. Cao, M. Lorenz, and M. Grundmann, Appl. Phys. Lett. 92, 241102 (2008).8 J. Li, S. Lee, Y. H. Ahn, J.-Y. Park, K. H. Koh, and K. H. Park, Appl. Phys. Lett. 92, 263102 (2008).9 H. Dong, Z. Chen, L. Sun, J. Lu, W. Xie, H. Tan, C. Jagadish, and X. Shen, Appl. Phys. Lett. 94, 173115 (2009).10 H. Dong, S. Sun, L. Sun, W. Xie, L. Zhou, X. Shen, and Z. Chen, Appl. Phys. Lett. 98, 011913 (2011).11 R.-M. Ma, X.-L. Wei, L. Dai, S.-F. Liu, T. Chen. S. Yue, Z. Li, Q. Chen, and G. G. Qin, Nano Lett. 9, 2697 (2009).12 Y. Xiao, C. Meng, X. Wu, and L. Tong, Appl. Phys. Lett. 99, 023109 (2011).13 E. Nogales, B. Me´ndez, and J. Piqueras, Nanotechnology 19, 035713 (2008).14 E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, Appl. Phys. Lett. 91, 133108 (2007).15 E. Nogales, B. Me´ndez, J. Piqueras, and J. A. García, Nanotechnology 21, 115201 (2009).16 E. Nogales, J. A. Garcı´a, B. Me´ndez, and J. Piqueras, J. Appl. Phys. 101, 033517 (2007).17 T. Voss, G. T. Svacha, S. Mu¨ ller, C. Ronning, D. Konjhodzic, F. Marlow, and E. Mazur, Nano Lett. 7, 3675 (2007).18 X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Nature (London) 421, 241 (2003).19 M. Rebien, W. Henrion, M. Hong, J. P. Mannaerts, and M. Fleischer, Appl. Phys. Lett. 81, 250 (2002).20 A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003).21 See supplementary material at http://dx.doi.org/10.1063/1.4732153 for x-ray microanalysis measurements. NO ©2012 American Institute of Physics.This work has been supported by MICINN through Projects MAT 2009-07882 and Consolider Ingenio CSD 2009-00013 and by BSCH-UCM (Project GR35-10A-910146). NO MICINN NO BSCH-UCM DS Docta Complutense RD 3 may 2024