RT Report T1 Optimizing initial guesses to improve global minimization A1 Ivorra, Benjamín Pierre Paul A1 Mohammadi, Bijan A1 Ramos Del Olmo, Ángel Manuel AB In this paper, we envision global optimization as finding, for a given calculation complexity, a suitable initial guess of a considered optimization algorithm. One can imagine that this possibility clearly improve the capacity of existing optimization algorithms, including stochastic ones. This approach is validated on several large dimension nonlinear minimization problems. Results are compared with those obtained by a geneti algorithm PB Departamento de Matemática Aplicada, Universidad Complutense YR 2008 FD 2008 LK https://hdl.handle.net/20.500.14352/56490 UL https://hdl.handle.net/20.500.14352/56490 LA eng NO Institut de Mathématiques et de Modélisation de Montpellier NO Ministerio de Educación y Ciencia (España) NO Comunidad de Madrid NO Universidad Complutense de Madrid DS Docta Complutense RD 15 jun 2025